39 research outputs found

    Temperature dependent graphene suspension due to thermal Casimir interaction

    Full text link
    Thermal effects contributing to the Casimir interaction between objects are usually small at room temperature and they are difficult to separate from quantum mechanical contributions at higher temperatures. We propose that the thermal Casimir force effect can be observed for a graphene flake suspended in a fluid between substrates at the room temperature regime. The properly chosen materials for the substrates and fluid induce a Casimir repulsion. The balance with the other forces, such as gravity and buoyancy, results in a stable temperature dependent equilibrium separation. The suspended graphene is a promising system due to its potential for observing thermal Casimir effects at room temperature.Comment: 5 pages, 4 figures, in APL production 201

    Fluid Mechanical and Electrical Fluctuation Forces in Colloids

    Full text link
    Fluctuations in fluid velocity and fluctuations in electric fields may both give rise to forces acting on small particles in colloidal suspensions. Such forces in part determine the thermodynamic stability of the colloid. At the classical statistical thermodynamic level, the fluid velocity and electric field contributions to the forces are comparable in magnitude. When quantum fluctuation effects are taken into account, the electric fluctuation induced van der Waals forces dominate those induced by purely fluid mechanical motions. The physical principles are applied in detail for the case of colloidal particle attraction to the walls of the suspension container and more briefly for the case of forces between colloidal particles.Comment: ReVTeX format, one *.eps figur

    Electronic Detection of Gravitational Disturbances and Collective Coulomb Interactions

    Full text link
    The cross section for a gravitational wave antenna to absorb a graviton may be directly expressed in terms of the non-local viscous response function of the metallic crystal. Crystal viscosity is dominated by electronic processes which then also dominate the graviton absorption rate. To compute this rate from a microscopic Hamiltonian, one must include the full Coulomb interaction in the Maxwell electric field pressure and also allow for strongly non-adiabatic transitions in the electronic kinetic pressure. The view that the electrons and phonons constitute ideal gases with a weak electron phonon interaction is not sufficiently accurate for estimating the full strength of the electronic interaction with a gravitational wave.Comment: 7 pages LaTeX 1 figure afig1.ep

    Casimir Forces and Graphene Sheets

    Full text link
    The Casimir force between two infinitely thin parallel sheets in a setting of NN such sheets is found. The finite two-dimensional conductivities, which describe the dispersive and absorptive properties of each sheet, are taken into account, whereupon the theory is applied to interacting graphenes. By exploring similarities with in-plane optical spectra for graphite, the conductivity of graphene is modeled as a combination of Lorentz type oscillators. We find that the graphene transparency and the existence of a universal constant conductivity e2/(4)e^2/(4\hbar) result in graphene/graphene Casimir interaction at large separations to have the same distance dependence as the one for perfect conductors but with much smaller magnitude

    Snell's Law from an Elementary Particle Viewpoint

    Full text link
    Snell's law of light deflection between media with different indices of refraction is usually discussed in terms of the Maxwell electromagnetic wave theory. Snell's law may also be derived from a photon beam theory of light rays. This latter particle physics view is by far the most simple one for understanding the laws of refraction.Comment: ReVTeX Format 2 *.eps figure

    Casimir energy for surfaces with constant conductivity

    Get PDF
    We consider the vacuum energy of the electromagnetic field in systems characterized by a constant conductivity using the zeta-regularization approach. The interaction in two cases is investigated: two infinitely thin parallel sheets and an infinitely thin spherical shell. We found that the Casimir energy for the planar system is always attractive and it has the same characteristic distance dependence as the interaction for two perfect semi-infinite metals. The Casimir energy for the spherical shell depends on the inverse radius of the sphere, but it maybe negative or positive depending on the value of the conductivity. If the conductivity is less than a certain critical value, the interaction is attractive, otherwise the Casimir force is repulsive regardless of the spherical shell radius. © 2014 American Physical Society
    corecore