43 research outputs found

    Gene profiling of the erythro- and megakaryoblastic leukaemias induced by the Graffi murine retrovirus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute erythro- and megakaryoblastic leukaemias are associated with very poor prognoses and the mechanism of blastic transformation is insufficiently elucidated. The murine Graffi leukaemia retrovirus induces erythro- and megakaryoblastic leukaemias when inoculated into NFS mice and represents a good model to study these leukaemias.</p> <p>Methods</p> <p>To expand our understanding of genes specific to these leukaemias, we compared gene expression profiles, measured by microarray and RT-PCR, of all leukaemia types induced by this virus.</p> <p>Results</p> <p>The transcriptome level changes, present between the different leukaemias, led to the identification of specific cancerous signatures. We reported numerous genes that may be potential oncogenes, may have a function related to erythropoiesis or megakaryopoiesis or have a poorly elucidated physiological role. The expression pattern of these genes has been further tested by RT-PCR in different samples, in a Friend erythroleukaemic model and in human leukaemic cell lines.</p> <p>We also screened the megakaryoblastic leukaemias for viral integrations and identified genes targeted by these integrations and potentially implicated in the onset of the disease.</p> <p>Conclusions</p> <p>Taken as a whole, the data obtained from this global gene profiling experiment have provided a detailed characterization of Graffi virus induced erythro- and megakaryoblastic leukaemias with many genes reported specific to the transcriptome of these leukaemias for the first time.</p

    STK35L1 Associates with Nuclear Actin and Regulates Cell Cycle and Migration of Endothelial Cells

    Get PDF
    BACKGROUND: Migration and proliferation of vascular endothelial cells are essential for repair of injured endothelium and angiogenesis. Cyclins, cyclin-dependent kinases (CDKs), and cyclin-dependent kinase inhibitors play an important role in vascular tissue injury and wound healing. Previous studies suggest a link between the cell cycle and cell migration: cells present in the G(1) phase have the highest potential to migrate. The molecular mechanism linking these two processes is not understood. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we explored the function of STK35L1, a novel Ser/Thr kinase, localized in the nucleus and nucleolus of endothelial cells. Molecular biological analysis identified a bipartite nuclear localization signal, and nucleolar localization sequences in the N-terminal part of STK35L1. Nuclear actin was identified as a novel binding partner of STK35L1. A class III PDZ binding domains motif was identified in STK35L1 that mediated its interaction with actin. Depletion of STK35L1 by siRNA lead to an accelerated G(1) to S phase transition after serum-stimulation of endothelial cells indicating an inhibitory role of the kinase in G(1) to S phase progression. Cell cycle specific genes array analysis revealed that one gene was prominently downregulated (8.8 fold) in STK35L1 silenced cells: CDKN2A alpha transcript, which codes for p16(INK4a) leading to G(1) arrest by inhibition of CDK4/6. Moreover in endothelial cells seeded on Matrigel, STK35L1 expression was rapidly upregulated, and silencing of STK35L1 drastically inhibited endothelial sprouting that is required for angiogenesis. Furthermore, STK35L1 depletion profoundly impaired endothelial cell migration in two wound healing assays. CONCLUSION/SIGNIFICANCE: The results indicate that by regulating CDKN2A and inhibiting G1- to S-phase transition STK35L1 may act as a central kinase linking the cell cycle and migration of endothelial cells. The interaction of STK35L1 with nuclear actin might be critical in the regulation of these fundamental endothelial functions

    Molecular signatures for CCN1, p21 and p27 in progressive mantle cell lymphoma

    Get PDF
    Mantle cell lymphoma (MCL) is a comparatively rare non-Hodgkin’s lymphoma characterised by overexpression of cyclin D1.Many patients present with or progress to advanced stage disease within 3 years. MCL is considered an incurable disease withmedian survival between 3 and 4 years. We have investigated the role(s) of CCN1 (CYR61) and cell cycle regulators inprogressive MCL. We have used the human MCL cell lines REC1 G519 > JVM2 cells by RQ-PCR, depicting a decrease in CCN1expression with disease progression. Investigation of CCN1 isoform expression by western blotting showed that whilst expres-sion of full-length CCN1 was barely altered in the cell lines, expression of truncated forms (18–20 and 28–30 kDa) decreasedwith disease progression. We have then demonstrated that cyclin D1 and cyclin dependent kinase inhibitors (p21CIP1and p27KIP1)are also involved in disease progression. Cyclin D1 was highly expressed in REC1 cells (OD: 1.0), reduced to one fifth in G519cells (OD: 0.2) and not detected by western blotting in JVM2 cells. p27KIP1followed a similar profile of expression as cyclin D1.Conversely, p21CIP1was absent in the REC1 cells and showed increasing expression in G519 and JVM2 cells. Subcellularlocalization detected p21CIP1/p27KIP1primarily within the cytoplasm and absent from the nucleus, consistent with altered roles in treatment resistance. Dysregulation of the CCN1 truncated forms are associated with MCL progression. In conjunction withreduced expression of cyclin D1 and increased expression of p21, this molecular signature may depict aggressive disease andtreatment resistance

    Isolation and characterization of kikA, a region on IncN group plasmids that determines killing of Klebsiella oxytoca.

    No full text
    Transfer of the IncN group plasmid pCU1 from Escherichia coli to Klebsiella oxytoca by conjugation kills a large proportion (90 to 95%) of the recipients of plasmid DNA, whereas transfer to E. coli or even to the closely related Enterobacter aerogenes does not. Two regions, kikA and kikB, have been identified on pCU1 that contribute to the Kik (killing in klebsiellas) phenotype. We have localized the kikA region to 500 bp by deletion analysis and show by DNA-DNA hybridization that kikA is highly conserved among the plasmids of incompatibility group N. The expression in K. oxytoca of kikA under the control of the strong inducible E. coli tac promoter results in loss of cell viability. The nucleotide sequence showed two overlapping open reading frames (ORFs) within the kikA region. The first ORF codes for a putative polypeptide of 104 amino acids (ORF104). The second ORF codes for a 70-amino-acid polypeptide (ORF70). The properties of the putative protein encoded by ORF104 and gene fusions of kikA to alkaline phosphatase by using TnphoA suggest that killing may involve an association with the bacterial membrane; however, we could not rule out the possibility that ORF70 plays a role in the Kik phenotype

    Ribosomal assembly defectivity in a set of amber mutants of Escherichia coli

    No full text
    SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Las1L Is a Nucleolar Protein Required for Cell Proliferation and Ribosome Biogenesisâ–¿

    No full text
    Ribosome biogenesis is a highly regulated process ensuring that cell growth (increase in biomass) is coordinated with cell proliferation. The formation of eukaryotic ribosomes is a multistep process initiated by the transcription and processing of rRNA in the nucleolus. Concomitant with this, several preribosomal particles, which transiently associate with numerous nonribosomal factors before mature 60S and 40S subunits are formed and exported in the cytoplasm, are generated. Here we identify Las1L as a previously uncharacterized nucleolar protein required for ribosome biogenesis. Depletion of Las1L causes inhibition of cell proliferation characterized by a G1 arrest dependent on the tumor suppressor p53. Moreover, we demonstrate that Las1L is crucial for ribosome biogenesis and that depletion of Las1L leads to inhibition of rRNA processing and failure to synthesize the mature 28S rRNA. Taken together, our data demonstrate that Las1L is essential for cell proliferation and biogenesis of the 60S ribosomal subunit
    corecore