68 research outputs found
Coexisting periodic attractors in injection locked diode lasers
We present experimental evidence for coexisting periodic attractors in a
semiconductor laser subject to external optical injection. The coexisting
attractors appear after the semiconductor laser has undergone a Hopf
bifurcation from the locked steady state. We consider the single mode rate
equations and derive a third order differential equation for the phase of the
laser field. We then analyze the bifurcation diagram of the time periodic
states in terms of the frequency detuning and the injection rate and show the
existence of multiple periodic attractors.Comment: LaTex, 14 pages, 6 postscript figures include
Time resolved pattern evolution in a large aperture laser
We have measured quasi-instantaneous transverse patterns in a broad aperture
laser. Non-ordered patterns yielding to boundary determined regular structures
in progressive time-integrated recording are observed. The linear analysis and
numerical integration of the full Maxwell-Bloch equations allow us to interpret
the features of the experiment. We show that this system being far from
threshold cannot be fully understood with a perturbative model.Comment: 7 pages, 5 GIF figures . To be published in Phys. Rev. Let
Spontaneous recanalization of a completely occluded saphenous vein graft two months following acute myocardial infarction with persistent one year patency
Acute myocardial infarction resulting from saphenous vein graft occlusion occurs not infrequently in patients who have undergone coronary artery bypass graft surgery. In this case report, we present a novel case of spontaneous recanalization of a thrombotic graft occlusion in a patient who presented with a subacute myocardial infarction. The patient was treated medically with aspirin as the only anti-platelet agent. Interestingly, he presented 2 months later with new onset angina. Coronary angiography demonstrated complete resolution of thrombus but a severe focal stenosis in the distal anastomoses. Following drug eluting stent placement, a favorable clinical course has ensued and patency confirmed on follow up angiography at 1 year
High-dimensional interior crisis in the Kuramoto-Sivashinsky equation
An investigation of interior crisis of high dimensions in an extended spatiotemporal system exemplified by the Kuramoto-Sivashinsky equation is reported. It is shown that unstable periodic orbits and their associated invariant manifolds in the Poincaré hyperplane can effectively characterize the global bifurcation dynamics of high-dimensional systems.A. C.-L. Chian, E. L. Rempel, E. E. Macau, R. R. Rosa, and F. Christianse
Frequency-Dependent Squeezed Vacuum Source for the Advanced Virgo Gravitational-Wave Detector
In this Letter, we present the design and performance of the frequency-dependent squeezed vacuum source that will be used for the broadband quantum noise reduction of the Advanced Virgo Plus gravitational-wave detector in the upcoming observation run. The frequency-dependent squeezed field is generated by a phase rotation of a frequency-independent squeezed state through a 285 m long, high-finesse, near-detuned optical resonator. With about 8.5 dB of generated squeezing, up to 5.6 dB of quantum noise suppression has been measured at high frequency while close to the filter cavity resonance frequency, the intracavity losses limit this value to about 2 dB. Frequency-dependent squeezing is produced with a rotation frequency stability of about 6 Hz rms, which is maintained over the long term. The achieved results fulfill the frequency dependent squeezed vacuum source requirements for Advanced Virgo Plus. With the current squeezing source, considering also the estimated squeezing degradation induced by the interferometer, we expect a reduction of the quantum shot noise and radiation pressure noise of up to 4.5 dB and 2 dB, respectively
Frequency-Dependent Squeezed Vacuum Source for the Advanced Virgo Gravitational-Wave Detector
In this Letter, we present the design and performance of the frequency-dependent squeezed vacuum source that will be used for the broadband quantum noise reduction of the Advanced Virgo Plus gravitational-wave detector in the upcoming observation run. The frequency-dependent squeezed field is generated by a phase rotation of a frequency-independent squeezed state through a 285 m long, high-finesse, near-detuned optical resonator. With about 8.5 dB of generated squeezing, up to 5.6 dB of quantum noise suppression has been measured at high frequency while close to the filter cavity resonance frequency, the intracavity losses limit this value to about 2 dB. Frequency-dependent squeezing is produced with a rotation frequency stability of about 6 Hz rms, which is maintained over the long term. The achieved results fulfill the frequency dependent squeezed vacuum source requirements for Advanced Virgo Plus. With the current squeezing source, considering also the estimated squeezing degradation induced by the interferometer, we expect a reduction of the quantum shot noise and radiation pressure noise of up to 4.5 dB and 2 dB, respectively
- …