1,666 research outputs found
HST measures of Mass Accretion Rates in the Orion Nebula Cluster
The present observational understanding of the evolution of the mass
accretion rates (Macc) in pre-main sequence stars is limited by the lack of
accurate measurements of Macc over homogeneous and large statistical samples of
young stars. Such observational effort is needed to properly constrain the
theory of star formation and disk evolution. Based on HST/WFPC2 observations,
we present a study of Macc for a sample of \sim 700 sources in the Orion Nebula
Cluster, ranging from the Hydrogen-burning limit to M\ast \sim 2M\odot. We
derive Macc from both the U-band excess and the H{\alpha} luminosity
(LH{\alpha}), after determining empirically both the shape of the typical
accretion spectrum across the Balmer jump and the relation between the
accretion luminosity (Lacc) and LH{\alpha}, that is Lacc/L\odot =
(1.31\pm0.03)\cdotLH{\alpha}/L\odot + (2.63\pm 0.13). Given our large
statistical sample, we are able to accurately investigate relations between
Macc and the parameters of the central star such as mass and age. We clearly
find Macc to increase with stellar mass, and decrease over evolutionary time,
but we also find strong evidence that the decay of Macc with stellar age occurs
over longer timescales for more massive PMS stars. Our best fit relation
between these parameters is given by: log(Macc/M\odot\cdotyr)=(-5.12 \pm 0.86)
-(0.46 \pm 0.13) \cdot log(t/yr) -(5.75 \pm 1.47)\cdot log(M\ast/M\odot) +
(1.17 \pm 0.23)\cdot log(t/yr) \cdot log(M\ast/M\odot). These results also
suggest that the similarity solution model could be revised for sources with
M\ast > 0.5M\odot. Finally, we do not find a clear trend indicating
environmental effects on the accretion properties of the sources.Comment: 17 pages, 15 figures, accepted for publication in Ap
Quantitative Evidence for an Intrinsic Age Spread in the Orion Nebula Cluster
Aims. We present a study of the distribution of stellar ages in the Orion
Nebula Cluster (ONC) based on accurate HST photometry taken from the HST
Treasury Program observations of the ONC utilizing the most recent estimate of
the cluster's distance (Menten et al. 2007). We investigate the presence of an
intrinsic age spread in the region and a possible trend of age with the spatial
distribution. Methods. We estimate the extinction and accretion luminosity
towards each source by performing synthetic photometry on an empirical
calibration of atmospheric models (Da Rio et al. 2010) using the package
Chorizos (Maiz-Apellaniz 2004). The position of the sources in the HR-diagram
is compared with different theoretical isochrones to estimate the mean cluster
age and age dispersion. Through Monte Carlo simulations we quantify the amount
of intrinsic age spread in the region, taking into account uncertainties on the
distance, spectral type, extinction, unresolved binaries, accretion and
photometric variability. Results. According to Siess et al. (2000) evolutionary
models the mean age of the Cluster is 2.2 Myr with a scatter of few Myrs. With
Monte Carlo simulations we find that the observed age spread is inconsistent
with a coeval stellar population, but is in agreement with a star formation
activity between 1.5 and 3.5 Myrs. We also observe light evidence for a trend
of ages with spatial distribution.Comment: 12 pages, 12 figures, Accepted for publication in Astronomy and
Astrophysic
A multi-color optical survey of the orion nebula cluster. II. The H-R diagram
We present a new analysis of the stellar population of the Orion Nebula Cluster (ONC) based on multi-band optical
photometry and spectroscopy.We study the color–color diagrams in BVI, plus a narrowband filter centered at 6200 Å, finding evidence that intrinsic color scales valid for main-sequence dwarfs are incompatible with the ONC in the M
spectral-type range, while a better agreement is found employing intrinsic colors derived from synthetic photometry, constraining the surface gravity value as predicted by a pre-main-sequence isochrone.We refine these model colors even further, empirically, by comparison with a selected sample of ONC stars with no accretion and no extinction. We consider the stars with known spectral types from the literature, and extend this sample with the addition of 65 newly classified stars from slit spectroscopy and 182 M-type from narrowband photometry; in this way, we isolate a sample of about 1000 stars with known spectral type. We introduce a new method to self-consistently derive the stellar reddening and the optical excess due to accretion from the location of each star in the BVI color–color diagram. This enables us to accurately determine the extinction of the ONC members, together with an estimate of their accretion luminosities. We adopt a lower distance for the Orion Nebula than previously assumed, based on recent parallax measurements. With a careful choice of also the spectral-type–temperature transformation, we produce the new Hertzsprung–Russell diagram of the ONC population, more populated than previous works. With respect to previous works, we find higher luminosity for late-type stars and a slightly lower luminosity for early types. We determine the age distribution of the population, peaking from ~2 to ~3 Myr depending on the model. We study the distribution of the members in the mass–age plane and find that taking into account selection effects due to incompleteness,
removes an apparent correlation between mass and age.We derive the initial mass function for low- and intermediate mass members of the ONC, which turns out to be model dependent and shows a turnover at M ≲ 0.2 M_⊙
An HST Imaging Survey of Low-Mass Stars in the Chamaeleon I Star Forming region
We present new HST/WFPC2 observations of 20 fields centered around T Tauri
stars in the Chamaeleon I star forming region. Images have been obtained in the
F631N ([OI]6300A), F656N (Ha) and F673N ([SII]6716A+6731A) narrow-band filters,
plus the Johnson V-band equivalent F547M filter. We detect 31 T Tauri stars
falling within our fields. We discuss the optical morphology of 10 sources
showing evidence of either binarity, circumstellar material, or mass loss. We
supplement our photometry with a compilation of optical, infrared and
sub-millimeter data from the literature, together with new sub-mm data for
three objects, to build the Spectral Energy Distributions (SED) of 19 single
sources. Using an SED model fitting tool, we self-consistently estimate a
number of stellar and disk parameters, while mass accretion rates are directly
derived from our Ha photometry. We find that bolometric luminosities derived
from dereddened optical data tend to be underestimated in systems with high
alpha(2-24} IR spectral index, suggesting that disks seen nearly edge-on may
occasionally be interpreted as low luminosity (and therefore more evolved)
sources. On the other hand, the same alpha(2-24) spectral index, a tracer of
the amount of dust in the warmer layers of the circumstellar disks, and the
mass accretion rate appear to decay with the isocronal stellar age, suggesting
that the observed age spread (~0.5-5 Myr) within the cluster is real. Our
sample contains a few outliers that may have dissipated their circumstellar
disks on shorter time-scale.Comment: to appear on Astronomical Journal, accepted April 16, 2012 (AJ-10740
The Massive Stellar Population in the Young Association LH 95 in the LMC
We present a spectroscopic study of the most massive stars in the young (4
Myr old) stellar cluster LH 95 in the Large Magellanic Cloud. This analysis
allows us to complete the census of the stellar population of the system,
previously investigated by us down to 0.4 solar masses with deep HST Advanced
Camera for Surveys photometry. We perform spectral classification of the five
stars in our sample, based on high resolution optical spectroscopy obtained
with 2.2m MPG/ESO FEROS. We use complementary ground-based photometry,
previously performed by us, to place these stars in the Hertzsprung-Russel
diagram. We derive their masses and ages by interpolation from evolutionary
models. The average ages and age spread of the most massive stars are found to
be in general comparable with those previously derived for the cluster from its
low mass PMS stars. We use the masses of the 5 sample stars to extend to the
high-mass end the stellar initial mass function of LH 95 previously established
by us. We find that the initial mass function follows a Salpeter relation down
to the intermediate-mass regime at 2 Msun. The second most massive star in LH
95 shows broad Balmer line emission and infrared excess, which are compatible
with a classical Be star. The existence of such a star in the system adds a
constrain to the age of the cluster, which is well covered by our age and age
spread determinations. The most massive star, a 60-70 Msun O2 giant is found to
be younger (<1 Myr) than the rest of the population. Its mass in relation to
the total mass of the system does not follow the empirical relation of the
maximum stellar mass versus the hosting cluster mass, making LH 95 an exception
to the average trend.Comment: 15 pages, 9 figures, MNRAS accepte
A Wide-Field Survey of the Orion Nebula Cluster in the Near-Infrared
We present J, H and K photometry of the Orion Nebula Cluster obtained at the
CTIO/Blanco 4 m telescope in Cerro Tololo with the ISPI imager. From the
observations we have assembled a catalog of about 7800 sources distributed over
an area of approximately 30'x40', the largest of any survey deeper than 2MASS
in this region. The catalog provides absolute coordinates accurate to about
0.15 arcseconds and 3sigma photometry in the 2MASS system down to J 19.5mag, H
18.0mag, K 18.5mag, enough to detect planetary size objects 1 Myr old under Av
10mag of extinction at the distance of the Orion Nebula. We present a
preliminary analysis of the catalog, done comparing the (J-H, H-K) color-color
diagram, the (H, J-H) and (K, H-K) color-magnitude diagrams and the JHK
luminosity functions of three regions at increasing projected distance from the
Trapezium. Sources in the inner region typically show IR colors compatible with
reddened T Tauri stars, whereas the outer fields are dominated by field stars
seen through an amount of extinction which decreases with the distance from the
center. The color-magnitude diagrams make it possible to clearly distinguish
between the main ONC population, spread across the full field, and background
sources. The luminosity functions of the inner region, corrected for
completeness, remain relatively flat in the sub-stellar regime regardless of
the strategy adopted to remove background contamination.Comment: Astronomical Journal, Accepted Oct. 1, 200
No wide spread of stellar ages in the Orion Nebula Cluster
The wide luminosity dispersion seen for stars at a given effective
temperature in the H-R diagrams of young clusters and star forming regions is
often interpreted as due to significant (~10 Myr) spreads in stellar
contraction age. In the scenario where most stars are born with circumstellar
discs, and that disc signatures decay monotonically (on average) over
timescales of only a few Myr, then any such age spread should lead to clear
differences in the age distributions of stars with and without discs. We have
investigated large samples of stars in the Orion Nebula Cluster (ONC) using
three methods to diagnose disc presence from infrared measurements. We find no
significant difference in the mean ages or age distributions of stars with and
without discs, consistent with expectations for a coeval population. Using a
simple quantitative model we show that any real age spread must be smaller than
the median disc lifetime. For a log-normal age distribution, there is an upper
limit of <0.14 dex (at 99% confidence) to any real age dispersion, compared to
the ~=0.4 dex implied by the H-R diagram. If the mean age of the ONC is 2.5
Myr, this would mean at least 95% of its low-mass stellar population has ages
between 1.3--4.8 Myr. We suggest that the observed luminosity dispersion is
caused by a combination of observational uncertainties and physical mechanisms
that disorder the conventional relationship between luminosity and age for pre
main-sequence stars. This means that individual stellar ages from the H-R
diagram are unreliable and cannot be used to directly infer a star formation
history. Irrespective of what causes the wide luminosity dispersion, the
finding that any real age dispersion is less than the median disc lifetime
argues strongly against star formation scenarios for the ONC lasting longer
than a few Myr.Comment: To appear in MNRAS, 13 page
A Tale of Three Cities : OmegaCAM discovers multiple sequences in the color-magnitude diagram of the Orion Nebula Cluster
Reproduced with permission from Astronomy & Astrophysics, © 2017 ESO. Published by EDP Sciences.As part of the Accretion Discs in H with OmegaCAM (ADHOC) survey, we imaged in r, i and H-alpha a region of 12x8 square degrees around the Orion Nebula Cluster. Thanks to the high-quality photometry obtained, we discovered three well-separated pre-main sequences in the color-magnitude diagram. The populations are all concentrated towards the cluster's center. Although several explanations can be invoked to explain these sequences we are left with two competitive, but intriguing, scenarios: a population of unresolved binaries with an exotic mass ratio distribution or three populations with different ages. Independent high-resolution spectroscopy supports the presence of discrete episodes of star formation, each separated by about a million years. The stars from the two putative youngest populations rotate faster than the older ones, in agreement with the evolution of stellar rotation observed in pre-main sequence stars younger than 4 Myr in several star forming regions. Whatever the final explanation, our results prompt for a revised look at the formation mode and early evolution of stars in clusters.Peer reviewedFinal Published versio
The Hubble Space Telescope Treasury Program on the Orion Nebula Cluster
The Hubble Space Telescope (HST) Treasury Program on the Orion Nebula Cluster
has used 104 orbits of HST time to image the Great Orion Nebula region with the
Advanced Camera for Surveys (ACS), the Wide-Field/Planetary Camera 2 (WFPC2)
and the Near Infrared Camera and Multi Object Spectrograph (NICMOS) instruments
in 11 filters ranging from the U-band to the H-band equivalent of HST. The
program has been intended to perform the definitive study of the stellar
component of the ONC at visible wavelengths, addressing key questions like the
cluster IMF, age spread, mass accretion, binarity and cirumstellar disk
evolution. The scanning pattern allowed to cover a contiguous field of
approximately 600 square arcminutes with both ACS and WFPC2, with a typical
exposure time of approximately 11 minutes per ACS filter, corresponding to a
point source depth AB(F435W) = 25.8 and AB(F775W)=25.2 with 0.2 magnitudes of
photometric error. We describe the observations, data reduction and data
products, including images, source catalogs and tools for quick look preview.
In particular, we provide ACS photometry for 3399 stars, most of them detected
at multiple epochs, WFPC2 photometry for 1643 stars, 1021 of them detected in
the U-band, and NICMOS JH photometry for 2116 stars. We summarize the early
science results that have been presented in a number of papers. The final set
of images and the photometric catalogs are publicly available through the
archive as High Level Science Products at the STScI Multimission Archive hosted
by the Space Telescope Science Institute.Comment: Accepted for publication on the Astrophysical Journal Supplement
Series, March 27, 201
Computer simulation study of the nematic–vapour interface in the Gay–Berne model
We present computer simulations of the vapour–nematic interface of the Gay–Berne model. We considered situations which correspond to either prolate or oblate molecules. We determine the anchoring of the nematic phase and correlate it with the intermolecular potential parameters. On the other hand, we evaluate the surface tension associated to this interface. We find a corresponding states law for the surface tension dependence on the temperature, valid for both prolate and oblate molecules.Fundación Portuguesa para la Ciencia y la TecnologÃa EXCL / FIS-NAN / 0083/2012Ministerio de EconomÃa y Competitividad FIS2012-32455Junta de AndalucÃa P09-FQM-493
- …