104,084 research outputs found

    Detectability index measures of binaural masking level difference across populations of inferior colliculus neurons.

    Get PDF
    In everyday life we continually need to detect signals against a background of interfering noise (the “cocktail party effect”): a task that is much easier to accomplish using two ears. The binaural masking level difference (BMLD) measures the ability of listeners to use a difference in binaural attributes to segregate sound sources and thus improve their discriminability against interfering noises. By computing the detectability of tones from rate-versus-level functions in the presence of a suprathreshold noise, we previously demonstrated that individual low-frequency delay-sensitive neurons in the inferior colliculus are able to show BMLDs. Here we consider the responses of a population of such neurons when the noise level is held constant (as conventionally in psychophysical paradigms). We have sampled the responses of 121 units in the inferior colliculi of five guinea pigs to identical noise and 500 Hz tones at both ears (NoSo) and to identical noise but with the 500 Hz tone at one ear inverted (NoSπ). The result suggests that the neurons subserving detection of So tones in No (identical noise at the two ears) noise are those neurons with best frequencies (BFs) close to 500 Hz that respond to So tones with an increase in their discharge rate from that attributable to the noise. The detection of the inverted (Sπ) signal is also attributable to neurons with BFs close to 500 Hz. However, among these neurons, the presence of the Sπ tone was indicated by an increased discharge rate in some neurons and by a decreased discharge rate in others

    Convergent input from brainstem coincidence detectors onto delay-sensitive neurons in the inferior colliculus.

    Get PDF
    Responses of low-frequency neurons in the inferior colliculus (IC) of anesthetized guinea pigs were studied with binaural beats to assess their mean best interaural phase (BP) to a range of stimulating frequencies. Phase plots (stimulating frequency vs BP) were produced, from which measures of characteristic delay (CD) and characteristic phase (CP) for each neuron were obtained. The CD provides an estimate of the difference in travel time from each ear to coincidence-detector neurons in the brainstem. The CP indicates the mechanism underpinning the coincidence detector responses. A linear phase plot indicates a single, constant delay between the coincidencedetector inputs from the two ears. In more than half (54 of 90) of the neurons, the phase plot was not linear. We hypothesized that neurons with nonlinear phase plots received convergent input from brainstem coincidence detectors with different CDs. Presentation of a second tone with a fixed, unfavorable delay suppressed the response of one input, linearizing the phase plot and revealing other inputs to be relatively simple coincidence detectors. For some neurons with highly complex phase plots, the suppressor tone altered BP values, but did not resolve the nature of the inputs. For neurons with linear phase plots, the suppressor tone either completely abolished their responses or reduced their discharge rate with no change in BP. By selectively suppressing inputs with a second tone, we are able to reveal the nature of underlying binaural inputs to IC neurons, confirming the hypothesis that the complex phase plots of many IC neurons are a result of convergence from simple brainstem coincidence detectors

    Graft Copolymerization of Methacrylic Acid, Acrylic Acid and Methyl Acrylate onto Styrene–Butadiene Block Copolymer

    Get PDF
    Methyl acrylate, methacrylic acid, and acrylic acid have been graft copolymerized onto styrene–butadiene block copolymer. All three monomers react through the macroradical interacting with the double bond of butadiene. The site of reaction has been established by infrared spectroscopy. For methyl acrylate every unit of the styrene–butadiene block copolymer is grafted but only a small fraction is grafted when the acids are used. The difference apparently lies in the fact that the reaction with the ester is homogeneous while with the acids the reactions are heterogeneous

    Expanded mixed multiscale finite element methods and their applications for flows in porous media

    Get PDF
    We develop a family of expanded mixed Multiscale Finite Element Methods (MsFEMs) and their hybridizations for second-order elliptic equations. This formulation expands the standard mixed Multiscale Finite Element formulation in the sense that four unknowns (hybrid formulation) are solved simultaneously: pressure, gradient of pressure, velocity and Lagrange multipliers. We use multiscale basis functions for the both velocity and gradient of pressure. In the expanded mixed MsFEM framework, we consider both cases of separable-scale and non-separable spatial scales. We specifically analyze the methods in three categories: periodic separable scales, GG- convergence separable scales, and continuum scales. When there is no scale separation, using some global information can improve accuracy for the expanded mixed MsFEMs. We present rigorous convergence analysis for expanded mixed MsFEMs. The analysis includes both conforming and nonconforming expanded mixed MsFEM. Numerical results are presented for various multiscale models and flows in porous media with shales to illustrate the efficiency of the expanded mixed MsFEMs.Comment: 33 page

    Size dependence of second-order hyperpolarizability of finite periodic chain under Su-Schrieffer-Heeger model

    Full text link
    The second hyperpolarizability γN(3ωω,ω,ω)\gamma_N(-3\omega\omega,\omega,\omega) of NN double-bond finite chain of trans-polyactylene is analyzed using the Su-Schrieffer-Heeger model to explain qualitative features of the size-dependence behavior of γN\gamma_N. Our study shows that γN/N\gamma_N/N is {\it nonmonotonic} with NN and that the nonmonotonicity is caused by the dominant contribution of the intraband transition to γN\gamma_N in polyenes. Several important physical effects are discussed to reduce quantitative discrepancies between experimental and our resultsComment: 3 figures, 1 tabl
    corecore