1,506 research outputs found
Modeling mixture transport at the nanoscale: Departure from existing paradigms
We present a novel theory of mixture transport in nanopores, which represents wall effects via a species-specific friction coefficient determined by its low density diffusion coefficient. Onsager coefficients from the theory are in good agreement with those from molecular dynamics simulation, when the nonuniformity of the density distribution is included. It is found that the commonly used assumption of a uniform density in the momentum balance is in serious error, as is also the traditional use of a mixture center of mass based frame of reference
Effect of Hindlimb Unweighting on Tissue Blood Flow in the Rat
The purpose of this study was to characterize the distribution of blood flow in the rat during hindlimb unweighting (HU) and post-HU standing and exercise and examine whether the previously reported elevation in anaerobic metabolism observed with contractile activity in the atrophied soleus muscle was caused by a reduced hindlimb blood flow. After either 15 days of HU or cage control, blood flow was measured with radioactive microspheres during unweighting, normal standing, and running on a treadmill (15 m/min). In another group of control and experimental animals, blood flow was measured during preexercise (PE) treadmill standing and treadmill running (15 m/min). Soleus muscle blood flow was not different between groups during unweighting, PE standing, and running at 15 m/min. Chronic unweighting resulted in the tendency for greater blood flow to muscles composed of predominantly fast-twitch glycolytic fibers. With exercise, blood flow to visceral organs was reduced compared with PE values in the control rats, whereas flow to visceral organs in 15-day HU animals was unaltered by exercise. These higher flows to the viscera and to muscles composed of predominantly fast-twitch glycolytic fibers suggest an apparent reduction in the ability of the sympathetic nervous system to distribute cardiac output after chronic HU. In conclusion, because 15 days of HU did not affect blood flow to the soleus during exercise, the increased dependence of the atrophied soleus on anerobic energy production during contractile activity cannot be explained by a reduced muscle blood flow
Investigating five key predictive text entry with combined distance and keystroke modelling
This paper investigates text entry on mobile devices using only five-keys. Primarily to support text entry on smaller devices than mobile phones, this method can also be used to maximise screen space on mobile phones. Reported combined Fitt's law and keystroke modelling predicts similar performance with bigram prediction using a five-key keypad as is currently achieved on standard mobile phones using unigram prediction. User studies reported here show similar user performance on five-key pads as found elsewhere for novice nine-key pad users
Cutibacterium acnes septic arthritis of the nonoperated knee: A case report.
Abstract
Cutibacterium (Propionibacterium) acnes, a gram-positive bacillus with low pathogenicity, is an uncommon but known cause of prosthetic joint infections, particularly related to shoulder surgery. C. acnes, however, is an extremely rare pathogen in the nonoperated knee joint. This report details an uncommon case of C. acnes septic knee arthritis after multiple intra-articular steroid injections in a 56-year-old male patient. After an indolent presentation and late diagnosis, the patient underwent surgical debridement with IV antibiotic management. This case illustrates that intra-articular corticosteroid injections for the management of osteoarthritis are not without risk. Literature supporting their use remains limited and clinicians should use proficient clinical judgment for appropriate patient selection for these injections. Vigilance following injections or aspirations of the knee should be maintained to identify the indolent clinical presentation of C. acnes septic arthritis.</jats:p
Dwarf Galaxy Mass Estimators vs. Cosmological Simulations
We use a suite of high-resolution cosmological dwarf galaxy simulations to
test the accuracy of commonly-used mass estimators from Walker et al.(2009) and
Wolf et al.(2010), both of which depend on the observed line-of-sight velocity
dispersion and the 2D half-light radius of the galaxy, . The simulations
are part of the the Feedback in Realistic Environments (FIRE) project and
include twelve systems with stellar masses spanning
that have structural and kinematic properties similar to those of observed
dispersion-supported dwarfs. Both estimators are found to be quite accurate:
and , with errors reflecting the 68% range over all
simulations. The excellent performance of these estimators is remarkable given
that they each assume spherical symmetry, a supposition that is broken in our
simulated galaxies. Though our dwarfs have negligible rotation support, their
3D stellar distributions are flattened, with short-to-long axis ratios . The accuracy of the estimators shows no trend with
asphericity. Our simulated galaxies have sphericalized stellar profiles in 3D
that follow a nearly universal form, one that transitions from a core at small
radius to a steep fall-off at large , they are well fit
by S\'ersic profiles in projection. We find that the most important empirical
quantity affecting mass estimator accuracy is . Determining by an
analytic fit to the surface density profile produces a better estimated mass
than if the half-light radius is determined via direct summation.Comment: Submitted to MNRAS. 11 pages, 12 figures, comments welcom
Проблеми побудови відкритої та гнучкої методичної системи навчання математичних методів фізики у педагогічних університетах
(uk) Розглядаються тенденції розвитку фундаментальної фізико-математичної освіти, зближення природничо-наукового та гуманітарного, що уможливлюють розв’язання проблеми побудови відкритої та гнучкої науково-обґрунтованої методичної системи навчання математичних методів фізики у педагогічних університетах.(en) The article examines progressive trends of fundamental physical and mathematical education, rapprochement of naturally scientific and humanitarian, that makes possible to solve the problem of constructing the open and flexible scientifically reasonable methodical systeme of mathematical methods of physics teaching inpedagogical universities
The effect of distance on reaction time in aiming movements
Target distance affects movement duration in aiming tasks but its effect on reaction time (RT) is poorly documented. RT is a function of both preparation and initiation. Experiment 1 pre-cued movement (allowing advanced preparation) and found no influence of distance on RT. Thus, target distance does not affect initiation time. Experiment 2 removed pre-cue information and found that preparing a movement of increased distance lengthens RT. Experiment 3 explored movements to targets of cued size at non-cued distances and found size altered peak speed and movement duration but RT was influenced by distance alone. Thus, amplitude influences preparation time (for reasons other than altered duration) but not initiation time. We hypothesise that the RT distance effect might be due to the increased number of possible trajectories associated with further targets: a hypothesis that can be tested in future experiments
Social and political mechanisms for establishing ecosystem management objectives
While social values guide the objectives of ecosystem management, successful execution requires a public well-informed on the consequences of alternative decision options. Daniels advocates a group-learning process entitled collaborative learning to achieve this understanding. Agency personnel should assume the roles of educators, facilitators, and managers. The agencies must also open up, meditate, and share decision-making power with the public while avoiding advocacy of any particular interest-group\u27s desires. Policy makers have a role in influencing social values by fostering a nonadversarial politics of cooperation and consensus building
SIDM on FIRE: Hydrodynamical Self-Interacting Dark Matter simulations of low-mass dwarf galaxies
We compare a suite of four simulated dwarf galaxies formed in 10 haloes of collisionless Cold Dark Matter (CDM) with galaxies
simulated in the same haloes with an identical galaxy formation model but a
non-zero cross-section for dark matter self-interactions. These cosmological
zoom-in simulations are part of the Feedback In Realistic Environments (FIRE)
project and utilize the FIRE-2 model for hydrodynamics and galaxy formation
physics. We find the stellar masses of the galaxies formed in Self-Interacting
Dark Matter (SIDM) with are very similar to those in CDM
(spanning ) and all runs lie on a
similar stellar mass -- size relation. The logarithmic dark matter density
slope () in the central pc remains
steeper than for the CDM-Hydro simulations with stellar mass
and core-like in the most massive galaxy.
In contrast, every SIDM hydrodynamic simulation yields a flatter profile, with
. Moreover, the central density profiles predicted in SIDM runs
without baryons are similar to the SIDM runs that include FIRE-2 baryonic
physics. Thus, SIDM appears to be much more robust to the inclusion of
(potentially uncertain) baryonic physics than CDM on this mass scale,
suggesting SIDM will be easier to falsify than CDM using low-mass galaxies. Our
FIRE simulations predict that galaxies less massive than provide potentially ideal targets for discriminating models,
with SIDM producing substantial cores in such tiny galaxies and CDM producing
cusps.Comment: 10 Pages, 7 figures, submitted to MNRA
Mapping between dissipative and Hamiltonian systems
Theoretical studies of nonequilibrium systems are complicated by the lack of
a general framework. In this work we first show that a transformation
introduced by Ao recently (J. Phys. A {\bf 37}, L25 (2004)) is related to
previous works of Graham (Z. Physik B {\bf 26}, 397 (1977)) and Eyink {\it et
al.} (J. Stat. Phys. {\bf 83}, 385 (1996)), which can also be viewed as the
generalized application of the Helmholtz theorem in vector calculus. We then
show that systems described by ordinary stochastic differential equations with
white noise can be mapped to thermostated Hamiltonian systems. A steady-state
of a dissipative system corresponds to the equilibrium state of the
corresponding Hamiltonian system. These results provides a solid theoretical
ground for corresponding studies on nonequilibrium dynamics, especially on
nonequilibrium steady state. The mapping permits the application of established
techniques and results for Hamiltonian systems to dissipative non-Hamiltonian
systems, those for thermodynamic equilibrium states to nonequilibrium steady
states. We discuss several implications of the present work.Comment: 18 pages, no figure. final version for publication on J. Phys. A:
Math & Theo
- …