493 research outputs found

    Multiparticle entanglement and its experimental detection

    Get PDF
    We discuss several aspects of multiparticle mixed state entanglement and its experimental detection. First we consider entanglement between two particles which is robust against disposals of other particles. To completely detect these kinds of entanglement, full knowledge of the multiparticle density matrix (or of all reduced density matrixes) is required. Then we review the relation of the separability properties of l-partite splittings of a state ρ\rho to its multipartite entanglement properties. We show that it suffices to determine the diagonal matrix elements of ρ\rho in a certain basis in order to detect multiparticle entanglement properties of ρ\rho. We apply these observations to analyze two recent experiments, where multiparticle entangled states of 3 (4) particles were produced. Finally, we focus on bound entangled states (non-separable, non-distillable states) and show that they can be activated by joint actions of the parties. We also provide several examples which show the activation of bound entanglement with bound entanglement.Comment: 9 pages, no figures; submitted to The Journal of Physics A: Mathematical and General, special issue in Quantum Information and Computatio

    Activating bound entanglement in multi-particle systems

    Get PDF
    We analyze the existence of activable bound entangled states in multi-particle systems. We first give a series of examples which illustrate some different ways in which bound entangled states can be activated by letting some of the parties to share maximally entangled states. Then, we derive necessary conditions for a state to be distillable as well as to be activable. These conditions turn out to be also sufficient for a certain family of multi-qubit states. We use these results to explicitely to construct states displaying novel properties related to bound entanglement and its activation.Comment: 8 pages, 3 figure

    Remote operations and interactions for systems of arbitrary dimensional Hilbert space: a state-operator approach

    Get PDF
    We present a systematic simple method for constructing deterministic remote operations on single and multiple systems of arbitrary discrete dimensionality. These operations include remote rotations, remote interactions and measurements. The resources needed for an operation on a two-level system are one ebit and a bidirectional communication of two cbits, and for an n-level system, a pair of entangled n-level particles and two classical ``nits''. In the latter case, there are n1n-1 possible distinct operations per one n-level entangled pair. Similar results apply for generating interaction between a pair of remote systems and for remote measurements. We further consider remote operations on NN spatially distributed systems, and show that the number of possible distinct operations increases here exponentially, with the available number of entangled pairs that are initial distributed between the systems. Our results follow from the properties of a hybrid state-operator object (``stator''), which describes quantum correlations between states and operations.Comment: 18 pages, 3 figures, typo correction

    Multipartite bound entangled states that violate Bell's inequality

    Get PDF
    We study the relation between distillability of multipartite states and violation of Bell's inequality. We prove that there exist multipartite bound entangled states (i.e. non-separable, non-distillable states) that violate a multipartite Bell inequality. This implies that (i) violation of Bell's inequality is not a sufficient condition for distillability and (ii) some bound entangled states cannot be described by a local hidden variable model.Comment: 4 pages, no figure

    Non-local Operations: Purification, storage, compression, tomography, and probabilistic implementation

    Full text link
    We provide several applications of a previously introduced isomorphism between physical operations acting on two systems and entangled states [1]. We show: (i) how to implement (weakly) non-local two qubit unitary operations with a small amount of entanglement; (ii) that a known, noisy, non-local unitary operation as well as an unknown, noisy, local unitary operation can be purified; (iii) how to perform the tomography of arbitrary, unknown, non-local operations; (iv) that a set of local unitary operations as well as a set of non-local unitary operations can be stored and compressed; (v) how to implement probabilistically two-qubit gates for photons. We also show how to compress a set of bipartite entangled states locally, as well as how to implement certain non-local measurements using a small amount of entanglement. Finally, we generalize some of our results to multiparty systems.Comment: 15 pages, no figure

    Completeness of the classical 2D Ising model and universal quantum computation

    Full text link
    We prove that the 2D Ising model is complete in the sense that the partition function of any classical q-state spin model (on an arbitrary graph) can be expressed as a special instance of the partition function of a 2D Ising model with complex inhomogeneous couplings and external fields. In the case where the original model is an Ising or Potts-type model, we find that the corresponding 2D square lattice requires only polynomially more spins w.r.t the original one, and we give a constructive method to map such models to the 2D Ising model. For more general models the overhead in system size may be exponential. The results are established by connecting classical spin models with measurement-based quantum computation and invoking the universality of the 2D cluster states.Comment: 4 pages, 1 figure. Minor change

    Universal quantum computer from a quantum magnet

    Full text link
    We show that a local Hamiltonian of spin-3/2 particles with only two-body nearest-neighbor Affleck-Kennedy-Lieb-Tasaki and exchange-type interactions has an unique ground state, which can be used to implement universal quantum computation merely with single-spin measurements. We prove that the Hamiltonian is gapped, independent of the system size. Our result provides a further step towards utilizing systems with condensed matter-type interactions for measurement-based quantum computation.Comment: 5 pages, 3 figure

    Multiparticle entanglement purification for two-colorable graph states

    Full text link
    We investigate multiparticle entanglement purification schemes which allow one to purify all two colorable graph states, a class of states which includes e.g. cluster states, GHZ states and codewords of various error correction codes. The schemes include both recurrence protocols and hashing protocols. We analyze these schemes under realistic conditions and observe for a generic error model that the threshold value for imperfect local operations depends on the structure of the corresponding interaction graph, but is otherwise independent of the number of parties. The qualitative behavior can be understood from an analytically solvable model which deals only with a restricted class of errors. We compare direct multiparticle entanglement purification protocols with schemes based on bipartite entanglement purification and show that the direct multiparticle entanglement purification is more efficient and the achievable fidelity of the purified states is larger. We also show that the purification protocol allows one to produce private entanglement, an important aspect when using the produced entangled states for secure applications. Finally we discuss an experimental realization of a multiparty purification protocol in optical lattices which is issued to improve the fidelity of cluster states created in such systems.Comment: 22 pages, 8 figures; replaced with published versio
    corecore