665 research outputs found
Simulated three-component granular segregation in a rotating drum
Discrete particle simulations are used to model segregation in granular
mixtures of three different particle species in a horizontal rotating drum.
Axial band formation is observed, with medium-size particles tending to be
located between alternating bands of big and small particles. Partial radial
segregation also appears; it precedes the axial segregation and is
characterized by an inner core region richer in small particles. Axial bands
are seen to merge during the long simulation runs, leading to a coarsening of
the band pattern; the relocation of particles involved in one such merging
event is examined. Overall, the behavior is similar to experiment and
represents a generalization of what occurs in the simpler two-component
mixture.Comment: 7 pages, 11 figures (low resolution color figures only; originals at
author's website http://www.ph.biu.ac.il/~rapaport/research/granular.html)
[revised version contains extra figures
Measurement of Indeterminacy in Packings of Perfectly Rigid Disks
Static packings of perfectly rigid particles are investigated theoretically
and numerically. The problem of finding the contact forces in such packings is
formulated mathematically. Letting the values of the contact forces define a
vector in a high-dimensional space enable us to show that the set of all
possible contact forces is convex, facilitating its numerical exploration. It
is also found that the boundary of the set is connected with the presence of
sliding contacts, suggesting that a stable packing should not have more than
2M-3N sliding contacts in two dimensions, where M is the number of contacts and
N is the number of particles.
These results were used to analyze packings generated in different ways by
either molecular dynamics or contact dynamics simulations. The dimension of the
set of possible forces and the number of sliding contacts agrees with the
theoretical expectations. The indeterminacy of each component of the contact
forces are found, as well as the an estimate for the diameter of the set of
possible contact forces. We also show that contacts with high indeterminacy are
located on force chains. The question of whether the simulation methods can
represent a packing's memory of its formation is addressed.Comment: 12 pages, 13 figures, submitted to Phys Rev
Granular Packings: Nonlinear elasticity, sound propagation and collective relaxation dynamics
Experiments on isotropic compression of a granular assembly of spheres show
that the shear and bulk moduli vary with the confining pressure faster than the
1/3 power law predicted by Hertz-Mindlin effective medium theories (EMT) of
contact elasticity. Moreover, the ratio between the moduli is found to be
larger than the prediction of the elastic theory by a constant value. The
understanding of these discrepancies has been a longstanding question in the
field of granular matter. Here we perform a test of the applicability of
elasticity theory to granular materials. We perform sound propagation
experiments, numerical simulations and theoretical studies to understand the
elastic response of a deforming granular assembly of soft spheres under
isotropic loading. Our results for the behavior of the elastic moduli of the
system agree very well with experiments. We show that the elasticity partially
describes the experimental and numerical results for a system under
compressional loads. However, it drastically fails for systems under shear
perturbations, particularly for packings without tangential forces and
friction. Our work indicates that a correct treatment should include not only
the purely elastic response but also collective relaxation mechanisms related
to structural disorder and nonaffine motion of grains.Comment: 21 pages, 13 figure
Piling and avalanches of magnetized particles
We performed computer simulations based on a two-dimensional Distinct Element
Method to study granular systems of magnetized spherical particles. We measured
the angle of repose and the surface roughness of particle piles, and we studied
the effect of magnetization on avalanching. We report linear dependence of both
angle of repose and surface roughness on the ratio of the magnetic dipole
interaction and the gravitational force (\emph{interparticle force ratio}).
There is a difference in avalanche formation at small and at large
interparticle force ratios. The transition is at . For
the particles forming the avalanches leave the system in a quasi-continuous
granular flow (\emph{granular regime}), while for the avalanches are
formed by long particle clusters (\emph{correlated regime}). The transition is
not sharp. We give plausible estimates for based on stability criteria.Comment: 9 pages, 7 figure
Effective boundary conditions for dense granular flows
We derive an effective boundary condition for granular flow taking into
account the effect of the heterogeneity of the force network on sliding
friction dynamics. This yields an intermediate boundary condition which lies in
the limit between no-slip and Coulomb friction; two simple functions relating
wall stress, velocity, and velocity variance are found from numerical
simulations. Moreover, we show that this effective boundary condition
corresponds to Navier slip condition when GDR MiDi's model is assumed to be
valid, and that the slip length depends on the length scale that characterises
the system, \emph{viz} the particle diameter.Comment: 4 pages, 5 figure
Measurements of the Yield Stress in Frictionless Granular Systems
We perform extensive molecular dynamics simulations of 2D frictionless
granular materials to determine whether these systems can be characterized by a
single static yield shear stress. We consider boundary-driven planar shear at
constant volume and either constant shear force or constant shear velocity.
Under steady flow conditions, these two ensembles give similar results for the
average shear stress versus shear velocity. However, near jamming it is
possible that the shear stress required to initiate shear flow can differ
substantially from the shear stress required to maintain flow. We perform
several measurements of the shear stress near the initiation and cessation of
flow. At fixed shear velocity, we measure the average shear stress
in the limit of zero shear velocity. At fixed shear force, we
measure the minimum shear stress required to maintain steady flow
at long times. We find that in finite-size systems ,
which implies that there is a jump discontinuity in the shear velocity from
zero to a finite value when these systems begin flowing at constant shear
force. However, our simulations show that the difference , and thus the discontinuity in the shear velocity, tend to zero in
the infinite system size limit. Thus, our results indicate that in the large
system limit, frictionless granular systems are characterized by a single
static yield shear stress. We also monitor the short-time response of these
systems to applied shear and show that the packing fraction of the system and
shape of the velocity profile can strongly influence whether or not the shear
stress at short times overshoots the long-time average value.Comment: 7 pages and 6 figure
Highly extensible skeletal muscle in snakes
Many snakes swallow large prey whole, and this process requires large displacements of the unfused tips of the mandibles and passive stretching of the soft tissues connecting them. Under these conditions, the intermandibular muscles are highly stretched but subsequently recover normal function. In the highly stretched condition we observed in snakes, sarcomere length (SL) increased 210% its resting value (SL0), and actin and myosin filaments no longer overlapped. Myofibrils fell out of register and triad alignment was disrupted. Following passive recovery, SLs returned to 82% SL0, creating a region of double-overlapping actin filaments. Recovery required recoil of intracellular titin filaments, elastic cytoskeletal components for realigning myofibrils, and muscle activation. Stretch of whole muscles exceeded that of sarcomeres as a result of extension of folded terminal tendon fibrils, stretching of extracellular elastin and independent slippage of muscle fibers. Snake intermandibular muscles thus provide a unique model of how basic components of vertebrate skeletal muscle can be modified to permit extreme extensibility. © 2014. Published by The Company of Biologists Ltd
Using the fractional interaction law to model the impact dynamics in arbitrary form of multiparticle collisions
Using the molecular dynamics method, we examine a discrete deterministic
model for the motion of spherical particles in three-dimensional space. The
model takes into account multiparticle collisions in arbitrary forms. Using
fractional calculus we proposed an expression for the repulsive force, which is
the so called fractional interaction law. We then illustrate and discuss how to
control (correlate) the energy dissipation and the collisional time for an
individual article within multiparticle collisions. In the multiparticle
collisions we included the friction mechanism needed for the transition from
coupled torsion-sliding friction through rolling friction to static friction.
Analysing simple simulations we found that in the strong repulsive state binary
collisions dominate. However, within multiparticle collisions weak repulsion is
observed to be much stronger. The presented numerical results can be used to
realistically model the impact dynamics of an individual particle in a group of
colliding particles.Comment: 17 pages, 8 figures, 1 table; In review process of Physical Review
Indeterminacy, Memory, and Motion in a Simple Granular Packing
We apply two theoretical and two numerical methods to the problem of a disk
placed in a groove and subjected to gravity and a torque. Methods assuming
rigid particles are indeterminate -- certain combinations of forces cannot be
calculated, but only constrained by inequalities. In methods assuming
deformable particles, these combinations of forces are determined by the
history of the packing. Thus indeterminacy in rigid particles becomes memory in
deformable ones. Furthermore, the torque needed to rotate the particle was
calculated. Two different paths to motion were identified. In the first,
contact forces change slowly, and the indeterminacy decreases continuously to
zero, and vanishes precisely at the onset of motion, and the torque needed to
rotate the disk is independent of method and packing history. In the second
way, this torque depends on method and on the history of the packing, and the
forces jump discontinuously at the onset of motion.Comment: 11 pages, 7 figures, submitted to Phys Rev
Why Effective Medium Theory Fails in Granular Materials
Experimentally it is known that the bulk modulus, K, and shear modulus, \mu,
of a granular assembly of elastic spheres increase with pressure, p, faster
than the p^1/3 law predicted by effective medium theory (EMT) based on
Hertz-Mindlin contact forces. To understand the origin of these discrepancies,
we perform numerical simulations of granular aggregates under compression. We
show that EMT can describe the moduli pressure dependence if one includes the
increasing number of grain-grain contacts with p. Most important, the affine
assumption (which underlies EMT), is found to be valid for K(p) but breakdown
seriously for \mu(p). This explains why the experimental and numerical values
of \mu(p) are much smaller than the EMT predictions.Comment: 4 pages, 5 figures, http://polymer.bu.edu/~hmaks
- …