176 research outputs found
Accurate Optical Target Pose Determination For Applications In Aerial Photogrammetry
We propose a new design for an optical coded target based on concentric circles and a position and orientation determination algorithm optimized for high distances compared to the target size. If two ellipses are fitted on the edge pixels corresponding to the outer and inner circles, quasi-analytical methods are known to obtain the coordinates of the projection of the circles center. We show the limits of these methods for quasi-frontal target orientations and in presence of noise and we propose an iterative refinement algorithm based on a geometric invariant. Next, we introduce a closed form, computationally inexpensive, solution to obtain the target position and orientation given the projected circle center and the parameters of the outer circle projection. The viability of the approach is demonstrated based on aerial pictures taken by an UAV from elevations between 10 to 100 m. We obtain a distance RMS below 0.25 % under 50 m and below 1 % under 100 m with a target size of 90 cm, part of which is a deterministic bias introduced by image exposure
ON RAW INERTIAL MEASUREMENTS IN DYNAMIC NETWORKS
Dynamic Networks have been introduced in the literature to solve multi-sensor fusion problems for navigation and mapping. They have been shown to outperform conventional methods in challenging scenarios, such as corridor mapping or self-calibration. In this work we investigate the problem of how raw inertial readings can be fused with GNSS position observations in Dynamic Networks (DN) with the goal of i) limiting the number of unknowns in the estimation problem and ii) improving the conditioning of the normal equations arising in least-squares adjustments in the absence of spatial constraints (e.g., image observations). For that we propose a modified version of the well known IMU-preintegration method, accounting for a non-constant gravity model, the Earth rotation and the apparent Coriolis force, and we compare it with the conventional DN formulation in a emulated scenario. This consists of a fixed-wing UAV flying four times over a 2 km long corridor
Effects of organic fertilization from wet olive pomace on emmer wheat (Triticum dicoccum Shrank) grain yield and composition
In a circular economy framework, the evaluation of waste by-product use as fertilizer is essential to promote sustainable agriculture. Olive oil wet pomace can be a valuable alternative as organic fertilizer on cereal crops. Aim of the study is to evaluate the effects of organic (with olive oil waste pomace) fertilization, on grain yield, protein and polyphenol content of emmer wheat grown in Southern Italy. Different amounts, time and amount of application of organic fertilizer were compared to a traditional mineral fertilizer treatment. The chemical analysis, mainly grain protein content and phenolic acids contents, were carried out on the hulled seeds. Agronomic traits showed that the application of olive wet pomace at 140 Mg ha−1 in the first year and 70 Mg ha−1 in the second year, gave the best grain yield than an annual amount application of 70 Mg ha−1. No difference between organic and mineral fertilization was observed when the latter was carried 1 or 2 years before, and the organic fertilization increased grain protein content respect to mineral one. Polyphenol content was not significantly affected by fertilization treatments, while ferulic acid in the emmer grain recently fertilized with wet pomace showed a higher content than emmer fertilized 2–3 years before
Mobile Phone Based Indoor Mapping
We presented a mobile phone scanning solution that offers a workflow for scanning not only small spaces, where drift can be neglected, but also larger spaces where it becomes a major accuracy issue. The LiDAR and image data is combined to build 3D representations of indoor spaces. The paper does focus on the drift compensation for larger scans on the mobile phone by using AutoTags detections. We show that those can also be used to combine scans from multiple independent scans
A Graphene Oxide-Angiogenin Theranostic Nanoplatform for the Therapeutic Targeting of Angiogenic Processes: The Effect of Copper-Supplemented Medium
Graphene oxide (GO) nanosheets with different content in the defective carbon species bound to oxygen sp3 were functionalized with the angiogenin (ANG) protein, to create a novel nanomedicine for modulating angiogenic processes in cancer therapies. The GO@ANG nanocomposite was scrutinized utilizing UV-visible and fluorescence spectroscopies. GO exhibits pro- or antiangiogenic effects, mostly attributed to the disturbance of ROS concentration, depending both on the total concentration (i.e., >100 ng/mL) as well as on the number of carbon species oxidized, that is, the C/O ratio. ANG is considered one of the most effective angiogenic factors that plays a vital role in the angiogenic process, often in a synergic role with copper ions. Based on these starting hypotheses, the GO@ANG nanotoxicity was assessed with the MTT colorimetric assay, both in the absence and in the presence of copper ions, by in vitro cellular experiments on human prostatic cancer cells (PC-3 line). Laser confocal microscopy (LSM) cell imaging evidenced an enhanced internationalization of GO@ANG than bare GO nanosheets, as well as significant changes in cell cytoskeleton organization and mitochondrial staining compared to the cell treatments with free ANG
Assessment of multispectral and hyperspectral imaging systems for digitisation of a Russian icon
In a study of multispectral and hyperspectral reflectance imaging, a Round Robin Test assessed the performance of different systems for the spectral digitisation of artworks. A Russian icon, mass-produced in Moscow in 1899, was digitised by ten institutions around Europe. The image quality was assessed by observers, and the reflectance spectra at selected points were reconstructed to characterise the icon’s colourants and to obtain a quantitative estimate of accuracy. The differing spatial resolutions of the systems affected their ability to resolve fine details in the printed pattern. There was a surprisingly wide variation in the quality of imagery, caused by unwanted reflections from both glossy painted and metallic gold areas of the icon’s surface. Specular reflection also degraded the accuracy of the reconstructed reflectance spectrum in some places, indicating the importance of control over the illumination geometry. Some devices that gave excellent results for matte colour charts proved to have poor performance for this demanding test object. There is a need for adoption of standards for digitising cultural heritage objects to achieve greater consistency of system performance and image quality.This article arose out of a Short-Term Scientific Mission (STSM) conducted by Tatiana Vitorino when visiting University College London during a 2-week period in late October 2015. The research was carried out under the auspices of the European COST Action TD1201 Colour and Space in Cultural Heritage (COSCH). The project website is at http://www.cosch.info. Under the COST rules, TV received funding for travel and accommodation expenses, and all coauthors were able to claim travel expenses to attend the subsequent COSCH project meeting. No other funding was received from COSCH for labour or equipment and all work was done on a voluntary pro bono basis.info:eu-repo/semantics/publishedVersio
A tunable nanoplatform of nanogold functionalised with Angiogenin peptides for anti-angiogenic therapy of brain tumours
Angiogenin (ANG), an endogenous protein that plays a key role in cell growth and survival, has been scrutinised here as promising nanomedicine tool for the modulation of pro-/anti-angiogenic processes in brain cancer therapy. Specifically, peptide fragments from the putative cell membrane binding domain (residues 60-68) of the protein were used in this study to obtain peptide-functionalised spherical gold nanoparticles (AuNPs) of about 10 nm and 30 nm in optical and hydrodynamic size, respectively. Different hybrid biointerfaces were fabricated by peptide physical adsorption (Ang60-68) or chemisorption (the cysteine analogous Ang60-68Cys) at the metal nanoparticle surface, and cellular assays were performed in the comparison with ANG-functionalised AuNPs. Cellular treatments were performed both in basal and in copper-supplemented cell culture medium, to scrutinise the synergic effect of the metal, which is another known angiogenic factor. Two brain cell lines were investigated in parallel, namely tumour glioblastoma (A172) and neuron-like differentiated neuroblastoma (d-SH-SY5Y). Results on cell viability/proliferation, cytoskeleton actin, angiogenin translocation and vascular endothelial growth factor (VEGF) release pointed to the promising potentialities of the developed systems as anti-angiogenic tunable nanoplaftforms in cancer cells treatment
Anti-angiogenic and anti-proliferative graphene oxide nanosheets for tumor cell therapy
Graphene oxide (GO) is a bidimensional novel material that exhibits high biocompatibility and angiogenic properties, mostly related to the intracellular formation of reactive oxygen species (ROS). In this work, we set up an experimental methodology for the fabrication of GO@peptide hybrids by the immobilization, via irreversible physical adsorption, of the Ac-(GHHPH)4-NH2 peptide sequence, known to mimic the anti-angiogenic domain of the histidine-proline-rich glycoprotein (HPRG). The anti-proliferative capability of the graphene-peptide hybrids were tested in vitro by viability assays on prostate cancer cells (PC-3 line), human neuroblastoma (SH-SY5Y), and human retinal endothelial cells (primary HREC). The anti-angiogenic response of the two cellular models of angiogenesis, namely endothelial and prostate cancer cells, was scrutinized by prostaglandin E2 (PGE2) release and wound scratch assays, to correlate the activation of inflammatory response upon the cell treatments with the GO@peptide nanocomposites to the cell migration processes. Results showed that the GO@peptide nanoassemblies not only effectively induced toxicity in the prostate cancer cells, but also strongly blocked the cell migration and inhibited the prostaglandin-mediated inflammatory process both in PC-3 and in HRECs. Moreover, the cytotoxic mechanism and the internalization efficiency of the theranostic nanoplatforms, investigated by mitochondrial ROS production analyses and confocal microscopy imaging, unraveled a dose-dependent manifold mechanism of action performed by the hybrid nanoassemblies against the PC-3 cells, with the detection of the GO-characteristic cell wrapping and mitochondrial perturbation. The obtained results pointed out to the very promising potential of the synthetized graphene-based hybrids for cancer therapy
Applying threat analysis approach in a small forest urban park (Northern Italy): local expert-based assessment to prioritize the management actions
To overcome the human-induced threats impacting on ecosystems, managers should focus on priorities. Here, we applied the expert-based Threat Analysis (TAN) in a forest urban park (Northern Italy), involving experts which ranked local threats, from the more to less impacting and following the IUCN classification. We also evaluated the level of knowledge of operators about these threats. Experts identified five priority target-specific threats: Roads and Railroads; Invasive-Non Native/Alien species; Other Ecosystem modifications; Recreational Activities, and Storms and Flooding. Storms and Flooding and Invasive-Non Native/Alien species appeared the threats with significant highest magnitude. Knowledge of threats is comparable without significant difference among them. However, Storms and Flooding and Roads and Railroads are the threats having both the highest level of knowledge by experts and the highest magnitude. At the opposite, Mowing was the less known threat regarding its regime and showed the lowest magnitude. TAN approach should be routinely used to build conceptual frameworks, ranking threats from the more to less impacting, therefore optimizing the management effort and developing local projects
Graphene Oxide Nanosheets Tailored With Aromatic Dipeptide Nanoassemblies for a Tuneable Interaction With Cell Membranes
Engineered graphene-based derivatives are attractive and promising candidates for nanomedicine applications because of their versatility as 2D nanomaterials. However, the safe application of these materials needs to solve the still unanswered issue of graphene nanotoxicity. In this work, we investigated the self-assembly of dityrosine peptides driven by graphene oxide (GO) and/or copper ions in the comparison with the more hydrophobic diphenylalanine dipeptide. To scrutinize the peptide aggregation process, in the absence or presence of GO and/or Cu2+, we used atomic force microscopy, circular dichroism, UV–visible, fluorescence and electron paramagnetic resonance spectroscopies. The perturbative effect by the hybrid nanomaterials made of peptide-decorated GO nanosheets on model cell membranes of supported lipid bilayers was investigated. In particular, quartz crystal microbalance with dissipation monitoring and fluorescence recovery after photobleaching techniques were used to track the changes in the viscoelastic properties and fluidity of the cell membrane, respectively. Also, cellular experiments with two model tumour cell lines at a short time of incubation, evidenced the high potential of this approach to set up versatile nanoplatforms for nanomedicine and theranostic applications
- …