1,208 research outputs found
Physical properties of the satellites of Saturn
The photometric and bulk parameters of the known and suspected satellites of Saturn are presented in updated tables and are compared. The surface compositions of all the satellites are discussed in terms of modern photometry and spectroscopy; most if not all of the inner bodies have water frost surfaces, but the outer three satellites have surfaces of unknown composition. The few reliable mass values of some inner satellites, together with the best current values for the satellite radii, suggest mean densities representative of bulk compositions dominated by frozen volatiles, though Titan may have a substantial volume fraction of silicates. The special case of Iapetus is considered in the light of new studies of its two distinct faces and polar cap
Sulphur compounds in the atmosphere of Venus. 2 - Upper limits for the abundance of carbonyl sulfide and hydrogen sulfide
Carbonyl and hydrogen sulfide abundance in Venus atmosphere determined from infrared spectr
Arizona-NASA Atlas of infrared solar spectrum, a preliminary report, number 123
Photometric tracings of infrared solar spectrum from NASA CV-990 jet during July-August 196
Calibration of weak 1.4 and 1.9 mu water-vapor absorptions
Calibration of water absorption bands in near infrared regio
Hydrocarbons on Saturns Satellites: Relationship to Interstellar Dust and the Solar Nebula
To understand the origin and evolution of our Solar System, and the basic components that led to life on Earth, we study interstellar and planetary spectroscopic signatures. The possible relationship of organic material detected in carbonaceous meteorites, interplanetary dust particles (IDPs), comets and the interstellar medium have been the source of speculation over the years as the composition and processes that governed the early solar nebula have been explored to understand the extent to which primitive material survived or became processed. The Cassini VIMS has provided new data relevant to this problem. Three of Saturn's satellites, Phoebe, Iapetus, and Hyperion, are found to have aromatic and aliphatic hydrocarbons on their surfaces. The aromatic hydrocarbon signature (C-H stretching mode at 3.28 micrometers) is proportionally significantly stronger (relative to the aliphatic bands) than that seen in other Solar System bodies (e.g., comets) and materials (Stardust samples, IDPs, meteorites) and the distinctive sub-features of the 3.4 micrometer aliphatic band (CH2 and CH3 groups) are reminiscent of those widely detected throughout the diffuse ISM. Phoebe may be a captured object that originated in the region beyond the present orbit of Neptune, where the solar nebula contained a large fraction of original interstellar ice and dust that was less processed than material closer to the Sun. Debris from Phoebe now resident on Iapetus and Hyperion, as well as o Phoebe itself, thus presents a unique blend of hydrocarbons, amenable to comparisons with interstellar hydrocarbons and other Solar System materials. The dust ring surrounding Saturn, in which Phoebe is embedded, probably originated from a collision with Phoebe. Dust ring particles are the likely source of the organic-bearing materials, and perhaps the recently identified small particles of Fe detected on Saturn's satellites. Lab measurements of the absolute band strengths of representative aliphatic and aromatic molecules, together with measurements from the VIMS data, allow us to calculate the number of C atoms to find the relative abundances of C atoms in the two kinds of organic molecules. The strength of the prominent aromatic C-H stretch band relative to the aliphatic band complex in Phoebe and Iapetus indicates that the relative abundance of aromatic to aliphatic carbon is very large (greater than 200). In contract, the aromatic band is nearly imperceptible in spectra of interplanetary dust particles (IDP), returned samples from comet 91P/Wild 2, insoluable carbonaceous material in most meteorites, and the diffuse interstellar dust (DISM) (although aromatics are known in all these materials-here we consider only the spectroscopic signature
Pre-encounter observations of 951 Gaspra
Photometry and colorimetry of 951 Gaspra were obtained on nine nights during the 1990 opposition. A composite lightcurve constructed using data from eight of those nights yielded a synodic rotational period of 7.04346 +/- 0.00006 hours, a mean absolute V magnitude of 11.8026 +/- 0.0025, and a slope parameter of 0.285 +/- 0.005. The apparent discrepancy can be easily resolved by realizing that their determination is based primarily on data obtained after opposition. Different phase functions pre- and post-opposition are a natural consequence of a changing aspect during an opposition. If the sub-Earth latitude on Gaspra is at a less equatorial aspect after opposition than it was before opposition, then we would expect to see a shallower phase function (corresponding to a larger numerical value of the slope parameter). Adding weight to this hypothesis is the last observation of the opposition, made in May after Gaspra had passed post opposition quadrature, which is displaced toward brighter absolute magnitudes relative to the rest of our data, indicating an even more poleward sub-Earth latitude than earlier in the opposition. Because the orbits of Earth and Gaspra are nearly coplanar, a substantial change in sub-Earth latitude during the opposition would not have been possible unless the obliquity of the asteroid's rotational axis is not small
The plumes of IO: A detection of solid sulfur dioxide particles
Spectra of Io obtained during eclipse show a narrow deep absorption feature at 4.871 microns, the wavelength of the Nu sub 1 + Nu sub 3 band of solid SO2. The 4 micron radiation comes from volcanic hot spots at a temperature too high for the existence of solid SO2. It is concluded that the spectral feature results from SO2 particles suspended in plumes above the hot spots. The derived abundance of approximately 0.0003 gm/sq cm may imply an SO2 solid-to-gas ratio of roughly one for the Loki plume, which would in turn suggest that it is driven by the SO2 rather than by sulfur
Pluto and Charon: Surface Colors and Compositions - A Hypothesis
The surface of Pluto displays an array of colors ranging from yellow to red to brown, while the surface of Charon is largely gray with a north polar zone of red color similar to regions on Pluto. Pluto's surface shows layers of intensely colored material in tilted and transported blocks, and fractured geo-graphical units. This arrangement suggests episodes of formation or deposition of that material interspersed with episodes of emplacement of ices having little or no color. The ices identified on the surfaces of these two bodies (N2, CH4, CO, C2H6, H2O on Pluto, and H2O and NH3 on Charon) are colorless, as are nearly all ices in a powdery state. The colors on Pluto probably arise from the in situ formation of a macro-molecular carbonaceous material generated by energetic processing of the ices on the surface. Laboratory experiments producing refractory tholins particularly relevant to Pluto explored the chemistry of both UV and low-energy electron bombardment of a mix of Pluto ices (N2:CH4:CO = 100:1:1). We can term this Pluto ice tholin PIT. Water ice in the crystalline state characterizes Charon's surface, and while most of Charon's surface is neutral in color, with geometric albedo approximately 0.38, the polar zone and a light cover of fainter but similar reddish color over some surface regions suggest a common origin with the colored material on Pluto. NH3 or NH3 x nH2O was identified from disk-integrated Earth-based spectra, and a few concentrated NH3 exposures have been found in the New Horizons spectral images
A high-resolution solar spectrometer for air-borne infrared observations, number 126
High resolution solar spectrometer for CV-990 aircraft infrared observation
The infrared spectrum of carbon suboxide. Part 1 - Region 1-2.5 microns. Part 2 - Region 2-15 microns. Part 3 - Classification of carbon suboxide vibrational bands
Laboratory tests of infrared spectrum of carbon suboxide, to determine presence in Venus and Mars atmosphere
- …