6,781 research outputs found
Mixing with the radiofrequency single-electron transistor
By configuring a radio-frequency single-electron transistor as a mixer, we
demonstrate a unique implementation of this device, that achieves good charge
sensitivity with large bandwidth about a tunable center frequency. In our
implementation we achieve a measurement bandwidth of 16 MHz, with a tunable
center frequency from 0 to 1.2 GHz, demonstrated with the transistor operating
at 300 mK. Ultimately this device is limited in center frequency by the RC time
of the transistor's center island, which for our device is ~ 1.6 GHz, close to
the measured value. The measurement bandwidth is determined by the quality
factor of the readout tank circuit.Comment: Submitted to APL september 200
Metastability and the Casimir Effect in Micromechanical Systems
Electrostatic and Casimir interactions limit the range of positional
stability of electrostatically-actuated or capacitively-coupled mechanical
devices. We investigate this range experimentally for a generic system
consisting of a doubly-clamped Au suspended beam, capacitively-coupled to an
adjacent stationary electrode. The mechanical properties of the beam, both in
the linear and nonlinear regimes, are monitored as the attractive forces are
increased to the point of instability. There "pull-in" occurs, resulting in
permanent adhesion between the electrodes. We investigate, experimentally and
theoretically, the position-dependent lifetimes of the free state (existing
prior to pull-in). We find that the data cannot be accounted for by simple
theory; the discrepancy may be reflective of internal structural instabilities
within the metal electrodes.Comment: RevTex, 4 pages, 4 figure
Mechanically probing coherent tunnelling in a double quantum dot
We study theoretically the interaction between the charge dynamics of a
few-electron double quantum dot and a capacitively-coupled AFM cantilever, a
setup realized in several recent experiments. We demonstrate that the
dot-induced frequency shift and damping of the cantilever can be used as a
sensitive probe of coherent inter-dot tunnelling, and that these effects can be
used to quantitatively extract both the magnitude of the coherent interdot
tunneling and (in some cases) the value of the double-dot T_1 time. We also
show how the adiabatic modulation of the double-dot eigenstates by the
cantilever motion leads to new effects compared to the single-dot case.Comment: 6 pages, 2 figure
The charge shuttle as a nanomechanical ratchet
We consider the charge shuttle proposed by Gorelik {\em et al.} driven by a
time-dependent voltage bias. In the case of asymmetric setup, the system
behaves as a rachet. For pure AC drive, the rectified current shows a complex
frequency dependent response characterized by frequency locking at fracional
values of the external frequency. Due to the non-linear dynamics of the
shuttle, the rachet effect is present also for very low frequencies.Comment: 4 pages, 4 figure
Discrete solitons in electromechanical resonators
We consider a parametrically driven Klein--Gordon system describing micro-
and nano-devices, with integrated electrical and mechanical functionality.
Using a multiscale expansion method we reduce the system to a discrete
nonlinear Schrodinger equation. Analytical and numerical calculations are
performed to determine the existence and stability of fundamental bright and
dark discrete solitons admitted by the Klein--Gordon system through the
discrete Schrodinger equation. We show that a parametric driving can not only
destabilize onsite bright solitons, but also stabilize intersite bright
discrete solitons and onsite and intersite dark solitons. Most importantly, we
show that there is a range of values of the driving coefficient for which dark
solitons are stable, for any value of the coupling constant, i.e. oscillatory
instabilities are totally suppressed. Stability windows of all the fundamental
solitons are presented and approximations to the onset of instability are
derived using perturbation theory, with accompanying numerical results.
Numerical integrations of the Klein--Gordon equation are performed, confirming
the relevance of our analysis
“Perhaps she only had a banana available to throw”: Habitus, racial prejudice, and whiteness on Australian Football League message boards
This article presents the findings of 2,415 posts collected from two prominent Australian Football League message boards that responded to a racist incident involving a banana being thrown at Adelaide Crows player, Eddie Betts, in August 2016. It adopts Bourdieu’s concept of habitus to examine the online practice of fans for evidence of racist discourse and the extent to which this was supported or contested by fellow fans. The overall findings are that online debates about race in Australian Rules Football and wider Australian society remain divided, with some posters continuing to reflect racial prejudice and discrimination towards non-whites. However, for the vast majority, views deemed to have racist connotations are contested and challenged in a presentation centering on social change and racial equality
A macro-realism inequality for opto-electro-mechanical systems
We show how to apply the Leggett-Garg inequality to opto-electro-mechanical
systems near their quantum ground state. We find that by using a dichotomic
quantum non-demolition measurement (via, e.g., an additional circuit-QED
measurement device) either on the cavity or on the nanomechanical system
itself, the Leggett-Garg inequality is violated. We argue that only
measurements on the mechanical system itself give a truly unambigous violation
of the Leggett-Garg inequality for the mechanical system. In this case, a
violation of the Leggett-Garg inequality indicates physics beyond that of
"macroscopic realism" is occurring in the mechanical system. Finally, we
discuss the difficulties in using unbound non-dichotomic observables with the
Leggett-Garg inequality.Comment: 9 pages, 2 figures. Added additional figure (2b), and associated
conten
- …