11 research outputs found
Controlling spins in adsorbed molecules by a chemical switch
The development of chemical systems with switchable molecular spins could lead to the architecture of materials with controllable magnetic or spintronic properties. Here, we present conclusive evidence that the spin of an organometallic molecule coupled to a ferromagnetic substrate can be switched between magnetic off and on states by a chemical stimulus. This is achieved by nitric oxide (NO) functioning as an axial ligand of cobalt(II)tetraphenylporphyrin (CoTPP) ferromagnetically coupled to nickel thin-film (Ni(001)). On NO addition, the coordination sphere of Co2+ is modified and a NO–CoTPP nitrosyl complex is formed, which corresponds to an off state of the Co spin. Thermal dissociation of NO from the nitrosyl complex restores the on state of the Co spin. The NO-induced reversible off–on switching of surface-adsorbed molecular spins observed here is attributed to a spin trans effect
Indirect magnetic coupling of manganese porphyrin to a ferromagnetic cobalt substrate
The coupling mechanism of magnetic molecules to ferromagnetic surfaces is of scientific interest to design and tune molecular spintronic interfaces utilizing their molecular and surface architecture. Indirect magnetic coupling has been proposed earlier on the basis of density functional theory +U (DFT+U) calculations, for the magnetic coupling of manganese(II) porphyrin (MnP) molecules to thin Co films. Here we provide an experimental X-ray magnetic circular dichroism (XMCD) spectroscopy and scanning tunneling microscopy (STM) study of manganese(III) tetraphenylporphyrin chloride (MnTPPCl) on rough (exhibiting a high density of monatomic steps) and smooth (exhibiting a low density of monatomic steps) thin Co films grown on a Cu(001) single crystal toward the assessment of the magnetic coupling mechanism. After deposition onto the surface, MnTPPCl molecules were found to couple ferromagnetically to both rough and smooth Co substrates. For high molecular coverage, we observed higher XMCD signals at the Mn L-edges on the smooth Co substrate than on the rough Co substrate, as expected for the proposed indirect magnetic coupling mechanism on the basis of its predominance on the flat surface areas. In particular, DFT+U calculations predict a weak ferromagnetic molecule-substrate coupling only if the chloride ion of the MnTPPCl molecule orients away (Co-Mn-Cl) from the Co surface. © 2010 American Chemical Society
Magnetic Interactions of Vanadyl Phthalocyanine with Ferromagnetic Iron, Cobalt, and Nickel Surfaces
THE TOXICOLOGICAL AND PHARMACOLOGICAL PROPERTIES OF THE REVERSIBLE INHIBITORS OF ACETYLCHOLINESTERASE, THE DERIVATIVES OF THE NITROGEN-CONTAINING HETEROCYCLES ON THE BASE OF METHYLTIONPHOSPHONE ACID
The object of investigation: the albino not-pedigreed he-mice and he-rats. As a result of the conformation analysis of tionphosphonates, the dependence of the anticholinesterase activity on the conformation flexibility of the inhibitor molecule has been revealed. The evaluation of the toxicological ans pharmacological properties has been given and the antiarhythmic acitivity of the nitrogen-containing heterocycles derivatives activity on the base of the methyltionphosphone acid has been revealed. The new data about the mechanisms of action and properties of tionphosphonates have been received. The field of application: the toxicology and pharmacologyAvailable from VNTIC / VNTIC - Scientific & Technical Information Centre of RussiaSIGLERURussian Federatio
Dynamic spin filtering at the Co/Alq3 interface mediated by weakly coupled second layer molecules
Spin filtering at organic-metal interfaces is often determined by the details of the interaction between the organic molecules and the inorganic magnets used as electrodes. Here we demonstrate a spin-filtering mechanism based on the dynamical spin relaxation of the long-living interface states formed by the magnet and weakly physisorbed molecules. We investigate the case of Alq(3) on Co and, by combining two-photon photoemission experiments with electronic structure theory, show that the observed long-time spin-dependent electron dynamics is driven by molecules in the second organic layer. The interface states formed by physisorbed molecules are not spin-split, but acquire a spin-dependent lifetime, that is the result of dynamical spin-relaxation driven by the interaction with the Co substrate. Such spin-filtering mechanism has an important role in the injection of spin-polarized carriers across the interface and their successive hopping diffusion into successive molecular layers of molecular spintronics devices