2,609 research outputs found

    A Lost Theorem: Definite Integrals in Asymptotic Setting

    Get PDF
    We present a simple yet rigorous theory of integration that is based on two axioms rather than on a construction involving Riemann sums. With several examples we demonstrate how to set up integrals in applications of calculus without using Riemann sums. In our axiomatic approach even the proof of the existence of the definite integral (which does use Riemann sums) becomes slightly more elegant than the conventional one. We also discuss an interesting connection between our approach and the history of calculus. The article is written for readers who teach calculus and its applications. It might be accessible to students under a teacher's supervision and suitable for senior projects on calculus, real analysis, or history of mathematics

    Subwavelength position sensing using nonlinear feedback and wave chaos

    Full text link
    We demonstrate a position-sensing technique that relies on the inherent sensitivity of chaos, where we illuminate a subwavelength object with a complex structured radio-frequency field generated using wave chaos and a nonlinear feedback loop. We operate the system in a quasi-periodic state and analyze changes in the frequency content of the scalar voltage signal in the feedback loop. This allows us to extract the object's position with a one-dimensional resolution of ~\lambda/10,000 and a two-dimensional resolution of ~\lambda/300, where \lambda\ is the shortest wavelength of the illuminating source.Comment: 4 pages, 4 figure

    Logarithmic periodicities in the bifurcations of type-I intermittent chaos

    Full text link
    The critical relations for statistical properties on saddle-node bifurcations are shown to display undulating fine structure, in addition to their known smooth dependence on the control parameter. A piecewise linear map with the type-I intermittency is studied and a log-periodic dependence is numerically obtained for the average time between laminar events, the Lyapunov exponent and attractor moments. The origin of the oscillations is built in the natural probabilistic measure of the map and can be traced back to the existence of logarithmically distributed discrete values of the control parameter giving Markov partition. Reinjection and noise effect dependences are discussed and indications are given on how the oscillations are potentially applicable to complement predictions made with the usual critical exponents, taken from data in critical phenomena.Comment: 4 pages, 6 figures, accepted for publication in PRL (2004
    corecore