56 research outputs found

    Paradigm shift in hydrocephalus research in legacy of Dandy’s pioneering work: rationale for third ventriculostomy in communicating hydrocephalus

    Get PDF
    OBJECTIVE: This study aims to question the generally accepted cerebrospinal fluid (CSF) bulk flow theory suggesting that the CSF is exclusively absorbed by the arachnoid villi and that the cause of hydrocephalus is a CSF absorption deficit. In addition, this study aims to briefly describe the new hydrodynamic concept of hydrocephalus and the rationale for endoscopic third ventriculostomy (ETV) in communicating hydrocephalus. CRITIQUE: The bulk flow theory has proven incapable of explaining the pivotal mechanisms behind communicating hydrocephalus. Thus, the theory is unable to explain why the ventricles enlarge, why the CSF pressure remains normal and why some patients improve after ETV. HYDRODYNAMIC CONCEPT OF HYDROCEPHALUS: Communicating hydrocephalus is caused by decreased intracranial compliance increasing the systolic pressure transmission into the brain parenchyma. The increased systolic pressure in the brain distends the brain towards the skull and simultaneously compresses the periventricular region of the brain against the ventricles. The final result is the predominant enlargement of the ventricles and narrowing of the subarachnoid space. The ETV reduces the increased systolic pressure in the brain simply by venting ventricular CSF through the stoma. The patent aqueduct in communicating hydrocephalus is too narrow to vent the CSF sufficiently

    Early detection of doxorubicin myocardial injury by ultrasonic tissue characterization in an experimental animal model

    No full text
    Abstract In the clinical setting, the early detection of myocardial injury induced by doxorubicin (DXR) is still considered a challenge. To assess whether ultrasonic tissue characterization (UTC) can identify early DXR-related myocardial lesions and their correlation with collagen myocardial percentages, we studied 60 rats at basal status and prospectively after 2mg/Kg/week DXR endovenous infusion. Echocardiographic examinations were conducted at baseline and at 8,10,12,14 and 16 mg/Kg DXR cumulative dose. The left ventricle ejection fraction (LVEF), shortening fraction (SF), and the UTC indices: corrected coefficient of integrated backscatter (IBS) (tissue IBS intensity/ phantom IBS intensity) (CC-IBS) and the cyclic variation magnitude of this intensity curve (MCV) were measured. The variation of each parameter of study through DXR dose was expressed by the average and standard error at specific DXR dosages and those at baseline. The collagen percent (%) was calculated in six control group animals and 24 DXR group animals. CC-IBS increased (1.29±0.27 x 1.1±0.26-basal; p=0.005) and MCV decreased (9.1± 2.8 x 11.02±2.6-basal; p=0.006) from 8 mg/Kg to 16mg/Kg DXR. LVEF presented only a slight but significant decrease (80.4±6.9% x 85.3±6.9%-basal, p=0.005) from 8 mg/Kg to 16 mg/Kg DXR. CC-IBS was 72.2% sensitive and 83.3% specific to detect collagen deposition of 4.24%(AUC=0.76). LVEF was not accurate to detect initial collagen deposition (AUC=0.54). In conclusion: UTC was able to early identify the DXR myocardial lesion when compared to LVEF, showing good accuracy to detect the initial collagen deposition in this experimental animal model
    • …
    corecore