5,652 research outputs found

    Space-like and time-like pion electromagnetic form factor and Fock state components within the Light-Front dynamics

    Get PDF
    The simultaneous investigation of the pion electromagnetic form factor in the space- and time-like regions within a light-front model allows one to address the issue of non-valence components of the pion and photon wave functions. Our relativistic approach is based on a microscopic vector meson dominance (VMD) model for the dressed vertex where a photon decays in a quark-antiquark pair, and on a simple parametrization for the emission or absorption of a pion by a quark. The results show an excellent agreement in the space like region up to -10 (GeV/c)2(GeV/c)^2, while in time-like region the model produces reasonable results up to 10 (GeV/c)2(GeV/c)^2.Comment: 74 pages, 11 figures, use revtex

    Thermal collapse of a granular gas under gravity

    Full text link
    Free cooling of a gas of inelastically colliding hard spheres represents a central paradigm of kinetic theory of granular gases. At zero gravity the temperature of a freely cooling homogeneous granular gas follows a power law in time. How does gravity, which brings inhomogeneity, affect the cooling? We combine molecular dynamics simulations, a numerical solution of hydrodynamic equations and an analytic theory to show that a granular gas cooling under gravity undergoes thermal collapse: it cools down to zero temperature and condenses on the bottom of the container in a finite time.Comment: 4 pages, 12 eps figures, to appear in PR

    Symmetric Autocompensating Quantum Key Distribution

    Full text link
    We present quantum key distribution schemes which are autocompensating (require no alignment) and symmetric (Alice and Bob receive photons from a central source) for both polarization and time-bin qubits. The primary benefit of the symmetric configuration is that both Alice and Bob may have passive setups (neither Alice nor Bob is required to make active changes for each run of the protocol). We show that both the polarization and the time-bin schemes may be implemented with existing technology. The new schemes are related to previously described schemes by the concept of advanced waves.Comment: 4 pages, 2 figur

    Non-equilibrium statistical mechanics of classical nuclei interacting with the quantum electron gas

    Full text link
    Kinetic equations governing time evolution of positions and momenta of atoms in extended systems are derived using quantum-classical ensembles within the Non-Equilibrium Statistical Operator Method (NESOM). Ions are treated classically, while their electrons quantum mechanically; however, the statistical operator is not factorised in any way and no simplifying assumptions are made concerning the electronic subsystem. Using this method, we derive kinetic equations of motion for the classical degrees of freedom (atoms) which account fully for the interaction and energy exchange with the quantum variables (electrons). Our equations, alongside the usual Newtonian-like terms normally associated with the Ehrenfest dynamics, contain additional terms, proportional to the atoms velocities, which can be associated with the electronic friction. Possible ways of calculating the friction forces which are shown to be given via complicated non-equilibrium correlation functions, are discussed. In particular, we demonstrate that the correlation functions are directly related to the thermodynamic Matsubara Green's functions, and this relationship allows for the diagrammatic methods to be used in treating electron-electron interaction perturbatively when calculating the correlation functions. This work also generalises previous attempts, mostly based on model systems, of introducing the electronic friction into Molecular Dynamics equations of atoms.Comment: 18 page

    Kilohertz QPOs in Neutron Star Binaries modeled as Keplerian Oscillations in a Rotating Frame of Reference

    Get PDF
    Since the discovery of kHz quasi-periodic oscillations (QPO) in neutron star binaries, the difference between peak frequencies of two modes in the upper part of the spectrum, i.e. Delta (omega)=omega_h-omega_K has been studied extensively. The idea that the difference Delta(omega) is constant and (as a beat frequency) is related to the rotational frequency of the neutron star has been tested previously. The observed decrease of Delta(omega) when omega_h and omega_k increase has weakened the beat frequency interpretation. We put forward a different paradigm: a Keplerian oscillator under the influence of the Coriolis force. For such an oscillator, omega_h and the assumed Keplerian frequency omega_k hold an upper hybrid frequency relation: omega^2_h-omega^2_K=4*Omega^2, where Omega is the rotational frequency of the star's magnetosphere near the equatorial plane. For three sources (Sco X-1, 4U 1608-52 and 4U 1702-429), we demonstrate that the solid body rotation Omega=Omega_0=const. is a good first order approximation. Within the second order approximation, the slow variation of Omega as a function of omega_K reveals the structure of the magnetospheric differential rotation. For Sco X-1, the QPO have frequencies approximately 45 and 90 Hz which we interpret as the 1st and 2nd harmonics of the lower branch of the Keplerian oscillations for the rotator with vector Omega not aligned with the normal of the disk: omega_L/2 pi=(Omega/pi)(omega_K/omega_h)sin(delta) where delta is the angle between vector Omega and the vector normal to the disk.Comment: 13 pages, 3 figures, accepted for publications in ApJ Letter

    Peculiarities of the Weyl - Wigner - Moyal formalism for scalar charged particles

    Get PDF
    A description of scalar charged particles, based on the Feshbach-Villars formalism, is proposed. Particles are described by an object that is a Wigner function in usual coordinates and momenta and a density matrix in the charge variable. It is possible to introduce the usual Wigner function for a large class of dynamical variables. Such an approach explicitly contains a measuring device frame. From our point of view it corresponds to the Copenhagen interpretation of quantum mechanics. It is shown how physical properties of such particles depend on the definition of the coordinate operator. The evolution equation for the Wigner function of a single-charge state in the classical limit coincides with the Liouville equation. Localization peculiarities manifest themselves in specific constraints on possible initial conditions.Comment: 16 pages, 2 figure

    X-ray Spectral Formation in a Converging Fluid Flow: Spherical Accretion into Black Holes

    Get PDF
    We study Compton upscattering of low-frequency photons in a converging flow of thermal plasma. The photons escape diffusively and electron scattering is the dominant source of opacity. We solve numerically and approximately analytically the equation of radiative transfer in the case of spherical, steady state accretion into black holes. Unlike previous work on this subject, we consider the inner boundary at a finite radius and this has a significant effect on the emergent spectrum. It is shown that the bulk motion of the converging flow is more efficient in upscattering photons than thermal Comptonization, provided that the electron temperature in the flow is of order a few keV or less. In this case, the spectrum observed at infinity consists of a soft component coming from those input photons which escaped after a few scatterings without any significant energy change and of a power law which extends to high energies and is made of those photons which underwent significant upscattering. The luminosity of the power law is relatively small compared to that of the soft component. The more reflective the inner boundary is, the flatter the power-law spectrum becomes. The spectral energy power-law index for black-hole accretion is always higher than 1 and it is approximately 1.5 for high accretion rates. This result tempts us to say that bulk motion Comptonization might be the mechanism behind the power-law spectra seen in black-hole X-ray sources.Comment: 37 pages, LaTex, AAS Macros, 8 ps figures, to appear in Ap

    Broad redshifted line as a signature of outflow

    Full text link
    We formulate and solve the diffusion problem of line photon propagation in a bulk outflow from a compact object (black hole or neutron star) using a generic assumption regarding the distribution of line photons within the outflow. Thomson scattering of the line photons within the expanding flow leads to a decrease of their energy which is of first order in v/c, where v is the outflow velocity and c is the speed of light. We demonstrate that the emergent line profile is closely related to the time distribution of photons diffusing through the flow (the light curve) and consists of a broad redshifted feature. We analyzed the line profiles for the general case of outflow density distribution. We emphasize that the redshifted lines are intrinsic properties of the powerful outflow that are supposed to be in many compact objects.Comment: 16 pages, 1 black-white figure and 2 color figures; accepted for publication in the Astrophysical Journa

    Spectroscopy of a narrow-line laser cooling transition in atomic dysprosium

    Full text link
    The laser cooling and trapping of ultracold neutral dysprosium has been recently demonstrated using the broad, open 421-nm cycling transition. Narrow-line magneto-optical trapping of Dy on longer wavelength transitions would enable the preparation of ultracold Dy samples suitable for loading optical dipole traps and subsequent evaporative cooling. We have identified the closed 741-nm cycling transition as a candidate for the narrow-line cooling of Dy. We present experimental data on the isotope shifts, the hyperfine constants A and B, and the decay rate of the 741-nm transition. In addition, we report a measurement of the 421-nm transition's linewidth, which agrees with previous measurements. We summarize the laser cooling characteristics of these transitions as well as other narrow cycling transitions that may prove useful for cooling Dy.Comment: 6+ pages, 5 figures, 5 table
    corecore