694 research outputs found

    Moderately elevated blood pressure during pregnancy and odds of hypertension later in life: the POUCHmoms longitudinal study

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138364/1/bjo14556-sup-0010-ICMJE7.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138364/2/bjo14556-sup-0007-ICMJE4.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138364/3/bjo14556.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138364/4/bjo14556-sup-0008-ICMJE5.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138364/5/bjo14556-sup-0001-TableS1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138364/6/bjo14556-sup-0002-TableS2.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138364/7/bjo14556-sup-0005-ICMJE2.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138364/8/bjo14556-sup-0003-TableS3.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138364/9/bjo14556-sup-0006-ICMJE3.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138364/10/bjo14556-sup-0009-ICMJE6.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138364/11/bjo14556_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138364/12/bjo14556-sup-0004-ICMJE1.pd

    Optimal Scheduling Using Branch and Bound with SPIN 4.0

    Get PDF
    The use of model checkers to solve discrete optimisation problems is appealing. A model checker can first be used to verify that the model of the problem is correct. Subsequently, the same model can be used to find an optimal solution for the problem. This paper describes how to apply the new PROMELA primitives of SPIN 4.0 to search effectively for the optimal solution. We show how Branch-and-Bound techniques can be added to the LTL property that is used to find the solution. The LTL property is dynamically changed during the verification. We also show how the syntactical reordering of statements and/or processes in the PROMELA model can improve the search even further. The techniques are illustrated using two running examples: the Travelling Salesman Problem and a job-shop scheduling problem

    Rapidity and k_T dependence of HBT correlations in Au+Au collisions at 200 GeV with PHOBOS

    Full text link
    Two-particle correlations of identical charged pion pairs from Au+Au collisions at sqrt(s_NN) = 200 GeV were measured by the PHOBOS experiment at RHIC. Data for the most central (0--15%) events were analyzed with Bertsch-Pratt (BP) and Yano-Koonin-Podgoretskii (YKP) parameterizations using pairs with rapidities of 0.4 < y < 1.3 and transverse momenta 0.1 < k_T < 1.4 GeV/c. The Bertsch-Pratt radii decrease as a function of pair transverse momentum. The pair rapidity Y_pipi roughly scales with the source rapidity Y_YKP, indicating strong dynamical correlations.Comment: 5 pages, 2 figures. To appear in the proceedings of Seventeenth International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2004), Oakland, California from January 11-17, 2004. Submitted to Journal of Physics G: Nuclear and Particle Physic

    System size and centrality dependence of charged hadron transverse momentum spectra in Au+Au and Cu+Cu collisions at sqrt(s) = 62.4 and 200 GeV

    Full text link
    We present transverse momentum distributions of charged hadrons produced in Cu+Cu collisions at sqrt(s) = 62.4 and 200 GeV. The spectra are measured for transverse momenta of 0.25 < p_T < 5.0 GeV/c at sqrt(s) = 62.4 GeV and 0.25 < p_T < 7.0 GeV/c at sqrt(s) = 200 GeV, in a pseudo-rapidity range of 0.2 < eta < 1.4. The nuclear modification factor R_AA is calculated relative to p+p data at both collision energies as a function of collision centrality. At a given collision energy and fractional cross-section, R_AA is observed to be systematically larger in Cu+Cu collisions compared to Au+Au. However, for the same number of participating nucleons, R_AA is essentially the same in both systems over the measured range of p_T, in spite of the significantly different geometries of the Cu+Cu and Au+Au systems.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    System Size, Energy and Centrality Dependence of Pseudorapidity Distributions of Charged Particles in Relativistic Heavy Ion Collisions

    Full text link
    We present the first measurements of the pseudorapidity distribution of primary charged particles in Cu+Cu collisions as a function of collision centrality and energy, \sqrtsnn = 22.4, 62.4 and 200 GeV, over a wide range of pseudorapidity, using the PHOBOS detector. Making a global comparison of Cu+Cu and Au+Au results, we find that the total number of produced charged particles and the rough shape (height and width) of the pseudorapidity distributions are determined by the number of nucleon participants. More detailed studies reveal that a more precise matching of the shape of the Cu+Cu and Au+Au pseudorapidity distributions over the full range of pseudorapidity occurs for the same Npart/2A value rather than the same Npart value. In other words, it is the collision geometry rather than just the number of nucleon participants that drives the detailed shape of the pseudorapidity distribution and its centrality dependence at RHIC energies.Comment: Submitted to Physical Review Letter

    Identified charged antiparticle to particle ratios near midrapidity in Cu+Cu collisions at sqrt(s) = 62.4 and 200 GeV

    Full text link
    Antiparticle to particle ratios for identified protons, kaons and pions at sqrt(s) = 62.4 and 200 GeV in Cu+Cu collisions are presented as a function of centrality for the midrapidity region of 0.2 < eta < 1.4. No strong dependence on centrality is observed. For the / ratio at ~ 0.51 GeV/c, we observe an average value of 0.50 +/- 0.003_(stat) +/- 0.04_(syst) and 0.77 +/- 0.008_(stat) +/- 0.05_(syst) for the 10% most central collisions of 62.4 and 200 GeV Cu+Cu, respectively. The values for all three particle species measured at sqrt(s) = 200 GeV are in agreement within systematic uncertainties with that seen in both heavier and lighter systems measured at the same RHIC energy. This indicates that system size does not appear to play a strong role in determining the midrapidity chemical freeze-out properties affecting the antiparticle to particle ratios of the three most abundant particle species produced in these collisions.Comment: 5 Pages, 4 figures Made changes to the figures to include the panel numbers. Slight changes to the text. Updated data points from other experiment
    corecore