13,496 research outputs found

    A formulation of a (q+1,8)-cage

    Full text link
    Let q2q\ge 2 be a prime power. In this note we present a formulation for obtaining the known (q+1,8)(q+1,8)-cages which has allowed us to construct small (k,g)(k,g)--graphs for k=q1,qk=q-1, q and g=7,8g=7,8. Furthermore, we also obtain smaller (q,8)(q,8)-graphs for even prime power qq.Comment: 14 pages, 2 figure

    A construction of small (q-1)-regular graphs of girth 8

    Full text link
    In this note we construct a new infinite family of (q1)(q-1)-regular graphs of girth 88 and order 2q(q1)22q(q-1)^2 for all prime powers q16q\ge 16, which are the smallest known so far whenever q1q-1 is not a prime power or a prime power plus one itself.Comment: 8 pages, 2 figure

    Collapse of Primordial Clouds

    Full text link
    We present here studies of collapse of purely baryonic Population III objects with masses ranging from 10M10M_\odot to 106M10^6M_\odot. A spherical Lagrangian hydrodynamic code has been written to study the formation and evolution of the primordial clouds, from the beginning of the recombination era (zrec1500z_{rec} \sim 1500) until the redshift when the collapse occurs. All the relevant processes are included in the calculations, as well as, the expansion of the Universe. As initial condition we take different values for the Hubble constant and for the baryonic density parameter (considering however a purely baryonic Universe), as well as different density perturbation spectra, in order to see their influence on the behavior of the Population III objects evolution. We find, for example, that the first mass that collapses is 8.5×104M8.5\times10^4M_\odot for h=1h=1, Ω=0.1\Omega=0.1 and δi=δρ/ρ=(M/Mo)1/3(1+zrec)1\delta_i={\delta\rho / \rho}=(M / M_o)^{-1/3}(1+z_{rec})^{-1} with the mass scale Mo=1015MM_o=10^{15}M_\odot. For Mo=4×1017MM_o=4\times10^{17}M_\odot we obtain 4.4×104M4.4\times10^{4}M_\odot for the first mass that collapses. The cooling-heating and photon drag processes have a key role in the collapse of the clouds and in their thermal history. Our results show, for example, that when we disregard the Compton cooling-heating, the collapse of the objects with masses >8.5×104M>8.5\times10^4M_\odot occurs earlier. On the other hand, disregarding the photon drag process, the collapse occurs at a higher redshift.Comment: 10 pages, MN plain TeX macros v1.6 file, 9 PS figures. Also available at http://www.iagusp.usp.br/~oswaldo (click "OPTIONS" and then "ARTICLES"). MNRAS in pres
    corecore