23 research outputs found
Efficient and perfect state transfer in quantum chains
We present a communication protocol for chains of permanently coupled qubits
which achieves perfect quantum state transfer and which is efficient with
respect to the number chains employed in the scheme. The system consists of
uncoupled identical quantum chains. Local control (gates, measurements) is only
allowed at the sending/receiving end of the chains. Under a quite general
hypothesis on the interaction Hamiltonian of the qubits a theorem is proved
which shows that the receiver is able to asymptotically recover the messages by
repetitive monitoring of his qubits.Comment: 6 pages, 2 figures; new material adde
Spin Star as Switch for Quantum Networks
Quantum state transfer is an important task in quantum information
processing. It is known that one can engineer the couplings of a
one-dimensional spin chain to achieve the goal of perfect state transfer. To
leverage the value of these spin chains, a spin star is potentially useful for
connecting different parts of a quantum network. In this work, we extend the
spin-chain engineering problem to the problems with a topology of a star
network. We show that a permanently coupled spin star can function as a network
switch for transferring quantum states selectively from one node to another by
varying the local potentials only. Together with one-dimensional chains, this
result allows applications of quantum state transfer be applied to more general
quantum networks.Comment: 10 pages, 2 figur
Sudden switch of generalized Lieb-Robinson velocity in a transverse field Ising spin chain
The Lieb-Robinson theorem states that the speed at which the correlations
between two distant nodes in a spin network can be built through local
interactions has an upper bound, which is called the Lieb-Robinson velocity.
Our central aim is to demonstrate how to observe the Lieb-Robinson velocity in
an Ising spin chain with a strong transverse field. We adopt and compare four
correlation measures for characterizing different types of correlations, which
include correlation function, mutual information, quantum discord, and
entanglement of formation. We prove that one of correlation functions shows a
special behavior depending on the parity of the spin number. All the
information-theoretical correlation measures demonstrate the existence of the
Lieb-Robinson velocity. In particular, we find that there is a sudden switch of
the Lieb-Robinson speed with the increasing of the number of spin
Entanglement Transfer via XXZ Heisenberg chain with DM Interaction
The role of spin-orbit interaction, arises from the Dzyaloshinski-Moriya
anisotropic antisymmetric interaction, on the entanglement transfer via an
antiferromagnetic XXZ Heisenberg chain is investigated. From symmetrical point
of view, the XXZ Hamiltonian with Dzyaloshinski-Moriya interaction can be
replaced by a modified XXZ Hamiltonian which is defined by a new exchange
coupling constant and rotated Pauli operators. The modified coupling constant
and the angle of rotations are depend on the strength of Dzyaloshinski-Moriya
interaction. In this paper we study the dynamical behavior of the entanglement
propagation through a system which is consist of a pair of maximally entangled
spins coupled to one end of the chain. The calculations are performed for the
ground state and the thermal state of the chain, separately. In both cases the
presence of this anisotropic interaction make our channel more efficient, such
that the speed of transmission and the amount of the entanglement are improved
as this interaction is switched on. We show that for large values of the
strength of this interaction a large family of XXZ chains becomes efficient
quantum channels, for whole values of an isotropy parameter in the region .Comment: 21 pages, 9 figure
State transfer in dissipative and dephasing environments
By diagonalization of a generalized superoperator for solving the master
equation, we investigated effects of dissipative and dephasing environments on
quantum state transfer, as well as entanglement distribution and creation in
spin networks. Our results revealed that under the condition of the same
decoherence rate , the detrimental effects of the dissipative
environment are more severe than that of the dephasing environment. Beside
this, the critical time at which the transfer fidelity and the
concurrence attain their maxima arrives at the asymptotic value
quickly as the spin chain length increases. The transfer
fidelity of an excitation at time is independent of when the system
subjects to dissipative environment, while it decreases as increases when
the system subjects to dephasing environment. The average fidelity displays
three different patterns corresponding to , and . For
each pattern, the average fidelity at time is independent of when the
system subjects to dissipative environment, and decreases as increases when
the system subjects to dephasing environment. The maximum concurrence also
decreases as increases, and when , it arrives at an
asymptotic value determined by the decoherence rate and the structure
of the spin network.Comment: 12 pages, 6 figure
Quantum Impurity Entanglement
Entanglement in J_1-J_2, S=1/2 quantum spin chains with an impurity is
studied using analytic methods as well as large scale numerical density matrix
renormalization group methods. The entanglement is investigated in terms of the
von Neumann entropy, S=-Tr rho_A log rho_A, for a sub-system A of size r of the
chain. The impurity contribution to the uniform part of the entanglement
entropy, S_{imp}, is defined and analyzed in detail in both the gapless, J_2 <=
J_2^c, as well as the dimerized phase, J_2>J_2^c, of the model. This quantum
impurity model is in the universality class of the single channel Kondo model
and it is shown that in a quite universal way the presence of the impurity in
the gapless phase, J_2 <= J_2^c, gives rise to a large length scale, xi_K,
associated with the screening of the impurity, the size of the Kondo screening
cloud. The universality of Kondo physics then implies scaling of the form
S_{imp}(r/xi_K,r/R) for a system of size R. Numerical results are presented
clearly demonstrating this scaling. At the critical point, J_2^c, an analytic
Fermi liquid picture is developed and analytic results are obtained both at T=0
and T>0. In the dimerized phase an appealing picure of the entanglement is
developed in terms of a thin soliton (TS) ansatz and the notions of impurity
valence bonds (IVB) and single particle entanglement (SPE) are introduced. The
TS-ansatz permits a variational calculation of the complete entanglement in the
dimerized phase that appears to be exact in the thermodynamic limit at the
Majumdar-Ghosh point, J_2=J_1/2, and surprisingly precise even close to the
critical point J_2^c. In appendices the relation between the finite temperature
entanglement entropy, S(T), and the thermal entropy, S_{th}(T), is discussed
and and calculated at the MG-point using the TS-ansatz.Comment: 62 pages, 27 figures, JSTAT macro
Information transfer fidelity in spin networks and ring-based quantum routers
Spin networks are endowed with an Information Transfer Fidelity (ITF), which defines an absolute upper bound on the probability of transmission of an excitation from one spin to another. The ITF is easily computable but the bound can be reached asymptotically in time only under certain conditions. General conditions for attainability of the bound are established and the process of achieving the maximum transfer probability is given a dynamical model, the translation on the torus. The time to reach the maximum probability is estimated using the simultaneous Diophantine approximation, implemented using a variant of the Lenstra-Lenstra-Lov\'asz (LLL) algorithm. For a ring with uniform couplings, the network can be made a metric space by defining a distance (satisfying the triangle inequality) that quantifies the lack of transmission fidelity between two nodes. It is shown that transfer fidelities and transfer times can be improved significantly by means of simple controls taking the form of non-dynamic, spatially localized bias fields, opening up the possibility for intelligent design of spin networks and dynamic routing of information encoded in them, while being more flexible than engineering fixed couplings to favor some transfers, and less demanding than control schemes requiring fast dynamic controls
State transfer in intrinsic decoherence spin channels
By analytically solving the master equation, we investigate quantum state
transfer, creation and distribution of entanglement in the model of Milburn's
intrinsic decoherence. Our results reveal that the ideal spin channels will be
destroyed by the intrinsic decoherence environment, and the detrimental effects
become severe as the decoherence rate and the spin chain length
increase. For infinite evolution time, both the state transfer fidelity and the
concurrence of the created and distributed entanglement approach steady state
values, which are independent of the decoherence rate and decrease as
the spin chain length increases. Finally, we present two modified spin
chains which may serve as near perfect spin channels for long distance state
transfer even in the presence of intrinsic decoherence environments .Comment: 11 pages, 11 figure