474 research outputs found
Enhancing the critical current in quasiperiodic pinning arrays below and above the matching magnetic flux
Quasiperiodic pinning arrays, as recently demonstrated theoretically and
experimentally using a five-fold Penrose tiling, can lead to a significant
enhancement of the critical current Ic as compared to "traditional" regular
pinning arrays. However, while regular arrays showed only a sharp peak in
Ic(Phi) at the matching flux Phi1 and quasiperiodic arrays provided a much
broader maximum at Phi<Phi1, both types of pinning arrays turned out to be
inefficient for fluxes larger than Phi1. We demonstrate theoretically and
experimentally the enhancement of Ic(Phi) for Phi>Phi1 by using non-Penrose
quasiperiodic pinning arrays. This result is based on a qualitatively different
mechanism of flux pinning by quasiperiodic pinning arrays and could be
potentially useful for applications in superconducting micro-electronic devices
operating in a broad range of magnetic fields.Comment: 7 pages, 4 figure
Suppression of dissipation in Nb thin films with triangular antidot arrays by random removal of pinning sites
The depinning current Ic versus applied magnetic field B close to the
transition temperature Tc of Nb thin films with randomly diluted triangular
arrays of antidots is investigated. % Our experiments confirm essential
features in Ic(B) as predicted by Reichhardt and Olson Reichhardt [Phys.Rev. B
76, 094512 (2007)]. % We show that, by introducing disorder into periodic
pinning arrays, Ic can be enhanced. % In particular, for arrays with fixed
density n_p of antidots, an increase in dilution Pd induces an increase in Ic
and decrease of the flux-flow voltage for B>Bp=n_p Phi_0.Comment: 5 pages, 4 figure
The use (and misuse) of sediment traps in coral reef environments : theory, observations, and suggested protocols
© The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Coral Reefs 30 (2011): 23-38, doi:10.1007/s00338-010-0705-3.Sediment traps are commonly used as standard tools for monitoring “sedimentation” in coral reef environments. In much of the literature where sediment traps were used to measure the effects of “sedimentation” on corals, it is clear from deployment descriptions and interpretations of the resulting data that information derived from sediment traps has frequently been misinterpreted or misapplied. Despite their widespread use in this setting, sediment traps do not provide quantitative information about “sedimentation” on coral surfaces. Traps can provide useful information about the relative magnitude of sediment dynamics if trap deployment standards are used. This conclusion is based first on a brief review of the state of knowledge of sediment trap dynamics, which has primarily focused on traps deployed high above the seabed in relatively deep water, followed by our understanding of near-bed sediment dynamics in shallow-water environments that characterize coral reefs. This overview is followed by the first synthesis of near-bed sediment trap data collected with concurrent hydrodynamic information in coral reef environments. This collective information is utilized to develop nine protocols for using sediment traps in coral reef environments, which focus on trap parameters that researchers can control such as trap height (H), trap mouth diameter (D), the height of the trap mouth above the substrate (z o ), and the spacing between traps. The hydrodynamic behavior of sediment traps and the limitations of data derived from these traps should be forefront when interpreting sediment trap data to infer sediment transport processes in coral reef environments
Bimodal Phase Diagram of the Superfluid Density in LaAlO3/SrTiO3 Revealed by an Interfacial Waveguide Resonator
We explore the superconducting phase diagram of the two-dimensional electron
system at the LaAlO3/SrTiO3 interface by monitoring the frequencies of the
cavity modes of a coplanar waveguide resonator fabricated in the interface
itself. We determine the phase diagram of the superconducting transition as a
function of temperature and electrostatic gating, finding that both the
superfluid density and the transition temperature follow a dome shape, but that
the two are not monotonically related. The ground state of this 2DES is
interpreted as a Josephson junction array, where a transition from long- to
short-range order occurs as a function of the electronic doping. The synergy
between correlated oxides and superconducting circuits is revealed to be a
promising route to investigate these exotic compounds, complementary to
standard magneto-transport measurements.Comment: 5 pages, 4 figures and 10 pages of supplementary materia
Wave- and tidally-driven flow and sediment flux across a fringing coral reef : southern Molokai, Hawaii
This paper is not subject to U.S. copyright. The definitive version was published in Continental Shelf Research 24 (2004): 1397-1419, doi:10.1016/j.csr.2004.02.010.The fringing coral reef off the south coast of Molokai, Hawaii is currently being studied as part of a US Geological Survey (USGS) multi-disciplinary project that focuses on geologic and oceanographic processes that affect coral reef systems. For this investigation, four instrument packages were deployed across the fringing coral reef during the summer of 2001 to understand the processes governing fine-grained terrestrial sediment suspension on the shallow reef flat (h=1 m) and its advection across the reef crest and onto the deeper fore reef. The time–series measurements suggest the following conceptual model of water and fine-grained sediment transport across the reef: Relatively cool, clear water flows up onto the reef flat during flooding tides. At high tide, more deep-water wave energy is able to propagate onto the reef flat and larger Trade wind-driven waves can develop on the reef flat, thereby increasing sediment suspension. Trade wind-driven surface currents and wave breaking at the reef crest cause setup of water on the reef flat, further increasing the water depth and enhancing the development of depth-limited waves and sediment suspension. As the tide ebbs, the water and associated suspended sediment on the reef flat drains off the reef flat and is advected offshore and to the west by Trade wind- and tidally- driven currents. Observations on the fore reef show relatively high turbidity throughout the water column during the ebb tide. It therefore appears that high suspended sediment concentrations on the deeper fore reef, where active coral growth is at a maximum, are dynamically linked to processes on the muddy, shallow reef flat
Recommended from our members
Cavity electromechanics with parametric mechanical driving
Microwave optomechanical circuits have been demonstrated to be powerful tools for both exploring fundamental physics of macroscopic mechanical oscillators, as well as being promising candidates for on-chip quantum-limited microwave devices. In most experiments so far, the mechanical oscillator is either used as a passive element and its displacement is detected using the superconducting cavity, or manipulated by intracavity fields. Here, we explore the possibility to directly and parametrically manipulate the mechanical nanobeam resonator of a cavity electromechanical system, which provides additional functionality to the toolbox of microwave optomechanics. In addition to using the cavity as an interferometer to detect parametrically modulated mechanical displacement and squeezed thermomechanical motion, we demonstrate that this approach can realize a phase-sensitive parametric amplifier for intracavity microwave photons. Future perspectives of optomechanical systems with a parametrically driven mechanical oscillator include exotic bath engineering with negative effective photon temperatures, or systems with enhanced optomechanical nonlinearities
- …