836 research outputs found

    New approach of fragment charge correlations in 129Xe+(nat)Sn central collisions

    Full text link
    A previous analysis of the charge (Z) correlations in the ΔZ−\Delta Z- plane for Xe+Sn central collisions at 32 MeV/u has shown an enhancement in the production of equally sized fragments (low ΔZ\Delta Z) which was interpreted as an evidence for spinodal decomposition. However the signal is weak and rises the question of the estimation of the uncorrelated yield. After a critical analysis of its robustness, we propose in this paper a new technique to build the uncorrelated yield in the charge correlation function. The application of this method to Xe+Sn central collision data at 32, 39, 45 and 50 MeV/u does not show any particular enhancement of the correlation function in any ΔZ\Delta Z bin.Comment: 23 pages, 9 figures, revised version with an added figure and minor changes. To appear in Nuclear Physics

    Instabilities in asymmetric nuclear matter

    Full text link
    The existence of phase transitions from liquid to gas phases in asymmetric nuclear matter (ANM) is related with the instability regions which are limited by the spinodals. In this work we investigate the instabilities in ANM described within relativistic mean field hadron models, both with constant and density dependent couplings at zero and finite temperatures. In calculating the proton and neutron chemical potentials we have used an expansion in terms of Bessel functions that is convenient at low densities. The role of the isovector scalar ÎŽ\delta-meson is also investigated in the framework of relativistic mean field models and density dependent hadronic models. It is shown that the main differences occur at finite temperature and large isospin asymmetry close to the boundary of the instability regions.Comment: 13 pages, 5 figures; to appear in Phys. Rev.

    Advancement in the understanding of multifragmentation and phase transition for hot nuclei

    Get PDF
    Recent advancement on the knowledge of multifragmentation and phase transition for hot nuclei is reported. It concerns i) the influence of radial collective energy on fragment partitions and the derivation of general properties of partitions in presence of such a collective energy, ii) a better knowledge of freeze-out properties obtained by means of a simulation based on all the available experimental information and iii) the quantitative study of the bimodal behaviour of the heaviest fragment charge distribution for fragmenting hot heavy quasi-projectiles which allows, for the first time, to estimate the latent heat of the phase transition.Comment: 9 pages, Proceedings of IWM09, November 4-7, Catania (Italy

    Estimate of average freeze-out volume in multifragmentation events

    Get PDF
    An estimate of the average freeze-out volume for multifragmentation events is presented. Values of volumes are obtained by means of a simulation using the experimental charged product partitions measured by the 4pi multidetector INDRA for 129Xe central collisions on Sn at 32 AMeV incident energy. The input parameters of the simulation are tuned by means of the comparison between the experimental and simulated velocity (or energy) spectra of particles and fragments.Comment: To be published in Phys. Lett. B 12 pages, 5 figure

    Freeze-out volume in multifragmentation - dynamical simulations

    Get PDF
    Stochastic mean-field simulations for multifragmenting sources at the same excitation energy per nucleon have been performed. The freeze-out volume, a concept which needs to be precisely defined in this dynamical approach, was shown to increase as a function of three parameters: freeze-out instant, fragment multiplicity and system size.Comment: Submitted to Eur. Phys. J. A - march 200

    Earth stabilisation via carbonate precipitation by plant-derived urease for building applications

    Get PDF
    Raw (unfired) earth represents a sustainable and efficient alternative to traditional construction materials but its dissemination into building practice has been hindered by a relatively high vulnerability to water erosion. Enzyme induced carbonate precipitation (EICP) can improve the durability of earth materials without using traditional chemical binders such as cement and lime. EICP utilises the urease enzyme to catalyse the hydrolysis of urea, which produces carbonate ions that react with the calcium ions dissolved in the pore water, thus resulting in the precipitation of calcium carbonate. The calcium carbonate fills the soil voids and binds particles together, which reduces water permeability and increases material strength. The urease enzyme is a hexameric protein that is found in the tissues of many common plants. This work proposes a low-cost and simple stabilisation technology that makes use of crude urease enzyme extracted from soybeans. This technology is applied to the stabilisation of compacted earth, whose properties are then assessed via unconfined compression, moisture buffering and durability tests. The findings suggest a noticeable improvement of material strength and durability, though further investigation is necessary to increase the competitiveness of EICP stabilisation against standard techniques using cement and lime

    A comparative study of the effects of particle grading and compaction effort on the strength and stiffness of earth building materials at different humidity levels

    Get PDF
    This paper presents an investigation of the mechanical properties of three different earth building materials manufactured by compacting two soils with distinct particle size distributions under two markedly different efforts. Multiple samples of each material have been equalised either inside a climatic chamber at different humidity levels or oven-dried, before being subjected to shearing inside a triaxial cell to measure the corresponding levels of strength and stiffness. Triaxial shearing has been performed under different levels of radial stress to investigate the effect of material confinement inside thick walls. Consistent with previous research, the study has indicated that strength and stiffness increase as ambient humidity reduces and degree of saturation decreases, though the actual variation of these properties strongly depends on the dry density and clay content of the material. Most importantly, particle grading has emerged as a key material parameter, whose impact on earth building has often been overlooked. Particle grading appears to influence strength and stiffness even more than compaction effort, dry density and average particle size, which are usually quoted as the most important variables for the design of earth building materials

    Numerical modelling and in-situ experiment for self-sealing of the induced fracture network of drift into the Callovo-Oxfordian claystone during a hydration process

    Get PDF
    The excavation damage zone surrounding an underground tunnel/gallery, and in particular its evolution, is being studied for the performance assessment of a radioactive waste underground repository. This paper focuses on numerical analysis of the self-sealing of the damaged zone based on an in-situ CDZ experiment for exploring the self-sealing of excavation damage zone during a hydration process. A plastic damage model is employed to describe the mechanical behaviour of Callovo-Oxfordian claystone (COx), and an added deformation model coupled with the standard Biot's model to simulate the significant deformation of COx claystone during the change of water content. Crack estimation and permeability evaluation of unsaturated fractured COx claystone are carried out through a post-processing method based on the fracture energy regularization and the cubic law, respectively. The validation of the proposed model is performed by numerical simulation of: (1) COx claystone swelling and triaxial compression tests, (2) self-sealing of fractured COx claystone samples during hydration process, (3) self-sealing of the damaged zone during a hydration process. Comparisons between the numerical and experimental results demonstrate the reliability of the proposed model to accurately describe the self-sealing of the fractured COx claystone, and the global water permeability reduction in hydration illustrates the accomplishment of the self-sealing of damaged zone

    Fragment properties of fragmenting heavy nuclei produced in central and semi-peripheral collisions

    Get PDF
    Fragment properties of hot fragmenting sources of similar sizes produced in central and semi-peripheral collisions are compared in the excitation energy range 5-10 AMeV. For semi-peripheral collisions a method for selecting compact quasi-projectiles sources in velocity space similar to those of fused systems (central collisions) is proposed. The two major results are related to collective energy. The weak radial collective energy observed for quasi-projectile sources is shown to originate from thermal pressure only. The larger fragment multiplicity observed for fused systems and their more symmetric fragmentation are related to the extra radial collective energy due to expansion following a compression phase during central collisions. A first attempt to locate where the different sources break in the phase diagram is proposed.Comment: 23 pages submitted to NP
    • 

    corecore