28 research outputs found
Physics and application of photon number resolving detectors based on superconducting parallel nanowires
The Parallel Nanowire Detector (PND) is a photon number resolving (PNR)
detector which uses spatial multiplexing on a subwavelength scale to provide a
single electrical output proportional to the photon number. The basic structure
of the PND is the parallel connection of several NbN superconducting nanowires
(100 nm-wide, few nm-thick), folded in a meander pattern. PNDs were fabricated
on 3-4 nm thick NbN films grown on MgO (TS=400C) substrates by reactive
magnetron sputtering in an Ar/N2 gas mixture. The device performance was
characterized in terms of speed and sensitivity. PNDs showed a counting rate of
80 MHz and a pulse duration as low as 660ps full width at half maximum (FWHM).
Building the histograms of the photoresponse peak, no multiplication noise
buildup is observable. Electrical and optical equivalent models of the device
were developed in order to study its working principle, define design
guidelines, and develop an algorithm to estimate the photon number statistics
of an unknown light. In particular, the modeling provides novel insight of the
physical limit to the detection efficiency and to the reset time of these
detectors. The PND significantly outperforms existing PNR detectors in terms of
simplicity, sensitivity, speed, and multiplication noise
High performance NbN nanowire superconducting single photon detectors fabricated on MgO substrates
We demonstrate high-performance nanowire superconducting single photon
detectors (SSPDs) on ultrathin NbN films grown at a temperature compatible with
monolithic integration. NbN films ranging from 150nm to 3nm in thickness were
deposited by dc magnetron sputtering on MgO substrates at 400C. The
superconducting properties of NbN films were optimized studying the effects of
deposition parameters on film properties. SSPDs were fabricated on high quality
NbN films of different thickness (7 to 3nm) deposited under optimal conditions.
Electrical and optical characterizations were performed on the SSPDs. The
highest QE value measured at 4.2K is 20% at 1300nm
Calibration and High Fidelity Measurement of a Quantum Photonic Chip
Integrated quantum photonic circuits are becoming increasingly complex.
Accurate calibration of device parameters and detailed characterization of the
prepared quantum states are critically important for future progress. Here we
report on an effective experimental calibration method based on Bayesian
updating and Markov chain Monte Carlo integration. We use this calibration
technique to characterize a two qubit chip and extract the reflectivities of
its directional couplers. An average quantum state tomography fidelity of
93.79+/-1.05% against the four Bell states is achieved. Furthermore, comparing
the measured density matrices against a model using the non-ideal device
parameters derived from the calibration we achieve an average fidelity of
97.57+/-0.96%. This pinpoints non-ideality of chip parameters as a major factor
in the decrease of Bell state fidelity. We also perform quantum state
tomography for Bell states while continuously varying photon distinguishability
and find excellent agreement with theory
Demonstration of Free-space Reference Frame Independent Quantum Key Distribution
Quantum key distribution (QKD) is moving from research laboratories towards
applications. As computing becomes more mobile, cashless as well as cardless
payment solutions are introduced, and a need arises for incorporating QKD in a
mobile device. Handheld devices present a particular challenge as the
orientation and the phase of a qubit will depend on device motion. This problem
is addressed by the reference frame independent (RFI) QKD scheme. The scheme
tolerates an unknown phase between logical states that varies slowly compared
to the rate of particle repetition. Here we experimentally demonstrate the
feasibility of RFI QKD over a free-space link in a prepare and measure scheme
using polarisation encoding. We extend the security analysis of the RFI QKD
scheme to be able to deal with uncalibrated devices and a finite number of
measurements. Together these advances are an important step towards mass
production of handheld QKD devices
Enhanced spontaneous emission in a photonic crystal light-emitting diode
We report direct evidence of enhanced spontaneous emission in a photonic
crystal (PhC) light-emitting diode. The device consists of p-i-n heterojunction
embedded in a suspended membrane, comprising a layer of self-assembled quantum
dots. Current is injected laterally from the periphery to the center of the
PhC. A well-isolated emission peak at 1300nm from the PhC cavity mode is
observed, and the enhancement of the spontaneous emission rate is clearly
evidenced by time-resolved electroluminescence measurements, showing that our
diode switches off in a time shorter than the bulk radiative and nonradiative
lifetimesComment: 10 page
Cavity-enhanced superconducting single-photon detectors on GaAs substrate
Nanowire superconducting single photon detectors (SSPDs) are unique detectors for many applications in quantum information and communications technology, owing to their ultrafast photoresponse, low dark count rate and low timing jitter. However, they have limited detection efficiency due to small optical absorption in ultrathin wires. A promising approach to increase the photon absorption in SSPDs, is integrating them with advanced optical structures. We demonstrate the successful integration of SSPDs with optical microcavities based on GaAs/AlAs Bragg mirrors. Characterization of these devices reveals clear cavity enhancement of the detection efficiency, resulting in a peak value of18% at 2=l300nm and T=4.2
Superconducting parallel nanowire detector with photon number resolving functionality
We present a new photon number resolving detector (PNR), the Parallel
Nanowire Detector (PND), which uses spatial multiplexing on a subwavelength
scale to provide a single electrical output proportional to the photon number.
The basic structure of the PND is the parallel connection of several NbN
superconducting nanowires (100 nm-wide, few nm-thick), folded in a meander
pattern. Electrical and optical equivalents of the device were developed in
order to gain insight on its working principle. PNDs were fabricated on 3-4 nm
thick NbN films grown on sapphire (substrate temperature TS=900C) or MgO
(TS=400C) substrates by reactive magnetron sputtering in an Ar/N2 gas mixture.
The device performance was characterized in terms of speed and sensitivity. The
photoresponse shows a full width at half maximum (FWHM) as low as 660ps. PNDs
showed counting performance at 80 MHz repetition rate. Building the histograms
of the photoresponse peak, no multiplication noise buildup is observable and a
one photon quantum efficiency can be estimated to be QE=3% (at 700 nm
wavelength and 4.2 K temperature). The PND significantly outperforms existing
PNR detectors in terms of simplicity, sensitivity, speed, and multiplication
noise
Superconducting nanowire photon number resolving detector at telecom wavelength
The optical-to-electrical conversion, which is the basis of optical
detectors, can be linear or nonlinear. When high sensitivities are needed
single-photon detectors (SPDs) are used, which operate in a strongly nonlinear
mode, their response being independent of the photon number. Nevertheless,
photon-number resolving (PNR) detectors are needed, particularly in quantum
optics, where n-photon states are routinely produced. In quantum communication,
the PNR functionality is key to many protocols for establishing, swapping and
measuring entanglement, and can be used to detect photon-number-splitting
attacks. A linear detector with single-photon sensitivity can also be used for
measuring a temporal waveform at extremely low light levels, e.g. in
long-distance optical communications, fluorescence spectroscopy, optical
time-domain reflectometry. We demonstrate here a PNR detector based on parallel
superconducting nanowires and capable of counting up to 4 photons at
telecommunication wavelengths, with ultralow dark count rate and high counting
frequency
Towards a LED based on a photonic crystal nanocavity for single photon sources at telecom wavelength
A fundamental step towards achieving an "on demand" single photon source would be the possibility of electrical pumping for a single QD and thus the integration of such a device in an opto-electronic circuit. In this work we describe the fabrication process and preliminary results of a Light Emitting Diode (LED) to be integrated with a PhC nanocavity at telecom wavelength. We demonstrate the possibility of an effective electric pumping of the QDs embedded into the membrane by contacting the n-doped and p-doped layers of the thin membrane, which allows the fabrication of a PhC nanocavity on it. (C) 2007 Elsevier B.V. All rights reserved
Filtrage fréquentiel par un dispositif à réseau intracavité inscrit sur cristaux liquides
International audienceNous proposons une méthode de filtrage reconfigurable sans mouvement mécanique associant un réseau de Bragg intracavité à un réseau de diffraction traditionnel. Un dispositif à cristaux liquides a été réalisé pour tester la validité du modèle théorique