39 research outputs found

    Electrophysiological properties of neurons in neonatal rat occipital cortex slices grown in a serum-free medium

    No full text
    The electrophysiological properties of individual neurons within organotypic explants of neonatal rat cortex were examined via intracellular recordings. The explants were grown for two weeks in a serum-free medium. The electrophysiological properties of the neurons within these explants were similar to those reported for both adult cortex in vivo and short-term in vitro slice preparations. The results of the present study show that cortical explants grown under serum-free conditions can serve as a useful model for long-term developmental studies associated with the physiological basis of neural network formatio

    Calculation of the conduction velocity of short nerve fibers

    No full text

    Effect of chronic exposure to high magnesium on neuron survival in long-term neocortical explants of neonatal rats in vitro

    No full text
    In order to assess the effect of elevated magnesium, neuronal morphology and physiology was studied in chronically cultured organotypic neonatal rat occipital neocortex. Explants grown in 10 mM magnesium were found to experience an approximate 30% cell loss (as shown by cell count and DNA-protein analysis), while 12.5 and 15 mM magnesium showed ca. 47 and 60% cell losses, respectively. Intracellular recording from 10 mM magnesium explants revealed that measurable postsynaptic potentials and action potentials could occur, apparently depending on the type of cell examined. All post-synaptic activities ceased in 12.5 mM magnesium cultures, though action potentials could be elicited by current stimulation. The effects of known depolarizing agents, viz. potassium and N-methyl-D-aspartate, on 12.5 mM magnesium-grown explants were also examined. Explants grown in the presence of 12.5 mM magnesium plus 10 mM potassium showed a dramatic increase in the loss of neurons. The simultaneous addition of 6,7-dinitro-quinoxaline-2,3-dione showed this to be due to an increase in non-N-methyl-D-aspartate mediated cell death in response to glutamate release brought about by the depolarizing effects of the potassium. The addition of 10 microM N-methyl-D-aspartate to 12.5 mM magnesium-grown cultures, on the other hand, improved cell survival to control levels. The mechanism of this reciprocal neuroprotective effect of N-methyl-D-aspartate against magnesium has yet to be elucidated. We conclude that these findings are consistent with regard to the opposing actions of N-methyl-D-aspartate and magnesium on calcium influx and various metabolic processes within the explant

    Elevated potassium prevents neuronal death but inhibits network formation in neocortical cultures

    No full text
    Chronic depolarization is inimical to neuronal growth and synaptogenesis so that spontaneous action potential generation appears to be required for the normal cytomorphological maturation of neocortical networks. The efficacy of 25 mM K in suppressing spontaneous bioelectric activity was monitored by extra- and intracellular recording from the explants. Intracellular recording from individual neurons showed that membrane potentials were reduced to ca -30 mV in potassium cultures but rapidly repolarized to ca -50 mV when returned to normal growth medium. Though action potentials could be readily evoked from these explants, spontaneous discharges and postsynaptic potentials were absent from potassium-treated cultures. Both spontaneous bioelectric activity and postsynaptic potentials returned to the cultures by 5 days after returning the explants to normal growth medium. Extracellular recordings also showed that the explants were bioelectrically silent in the presence of 25 mM K or 25 mM K plus tetrodotoxin. In contrast to tetrodotoxin alone, bioelectric activity was absent when the cultures (with or without tetrodotoxin) were returned to normal growth medium. The explants gradually began to evince spontaneous bioelectric activity between 3 and 5 days after being returned to normal growth medium. Massive cell death induced by chronic exposure to tetrodotoxin was totally prevented by concomitant addition of 25 mM potassium, though these explants were significantly thinner than controls due to a large decrease in neuropil. We conclude that chronic depolarization of neonatal cortical explants by potassium results in a delayed return of spontaneous bioelectric discharges. Chronic depolarization results in a retardation of network formation in these explants apparently due to a lack of neurite and/or synapse formation.(ABSTRACT TRUNCATED AT 250 WORDS

    Differential antiepileptic effects of the organic calcium antagonists verapamil and flunarizine in neurons of organotypic neocortical explants from newborn rats

    No full text
    Effects of the organic calcium antagonists verapamil and flunarizine on pentylenetetrazol induced paroxysmal depolarizations were tested in organotypic neocortical explants taken from neonatal rats. In these in vitro experiments the papaverin derivative verapamil depressed, and finally abolished, epileptic discharges in all cases. The piperazine derivative flunarizine, however, which is known to suppress epileptic discharges in hippocampal CA3 neurons (Bingmann and Speckmann 1986), showed no significant antiepileptic effects in the explanted neocortical neurons. Thus, the present findings may indicate that the suppressive action of flunarizine on the generation of paroxysmal depolarizations is restricted to distinct populations of neurons
    corecore