376 research outputs found
A System of Interaction and Structure II: The Need for Deep Inference
This paper studies properties of the logic BV, which is an extension of
multiplicative linear logic (MLL) with a self-dual non-commutative operator. BV
is presented in the calculus of structures, a proof theoretic formalism that
supports deep inference, in which inference rules can be applied anywhere
inside logical expressions. The use of deep inference results in a simple
logical system for MLL extended with the self-dual non-commutative operator,
which has been to date not known to be expressible in sequent calculus. In this
paper, deep inference is shown to be crucial for the logic BV, that is, any
restriction on the ``depth'' of the inference rules of BV would result in a
strictly less expressive logical system
The open future, bivalence and assertion
It is highly intuitive that the future is open and the past is closed—whereas it is unsettled whether there will be a fourth world war, it is settled that there was a first. Recently, it has become increasingly popular to claim that the intuitive openness of the future implies that contingent statements about the future, such as ‘there will be a sea battle tomorrow,’ are non-bivalent (neither true nor false). In this paper, we argue that the non-bivalence of future contingents is at odds with our pre-theoretic intuitions about the openness of the future. These are revealed by our pragmatic judgments concerning the correctness and incorrectness of assertions of future contingents. We argue that the pragmatic data together with a plausible account of assertion shows that in many cases we take future contingents to be true (or to be false), though we take the future to be open in relevant respects. It follows that appeals to intuition to support the non-bivalence of future contingents is untenable. Intuition favours bivalence
The Invisible Thin Red Line
The aim of this paper is to argue that the adoption of an unrestricted principle of bivalence is compatible with a metaphysics that (i) denies that the future is real, (ii) adopts nomological indeterminism, and (iii) exploits a branching structure to provide a semantics for future contingent claims. To this end, we elaborate what we call Flow Fragmentalism, a view inspired by Kit Fine (2005)’s non-standard tense realism, according to which reality is divided up into maximally coherent collections of tensed facts. In this way, we show how to reconcile a genuinely A-theoretic branching-time model with the idea that there is a branch corresponding to the thin red line, that is, the branch that will turn out to be the actual future history of the world
History-sensitive versus future-sensitive approaches to security in distributed systems
We consider the use of aspect-oriented techniques as a flexible way to deal
with security policies in distributed systems. Recent work suggests to use
aspects for analysing the future behaviour of programs and to make access
control decisions based on this; this gives the flavour of dealing with
information flow rather than mere access control. We show in this paper that it
is beneficial to augment this approach with history-based components as is the
traditional approach in reference monitor-based approaches to mandatory access
control. Our developments are performed in an aspect-oriented coordination
language aiming to describe the Bell-LaPadula policy as elegantly as possible.
Furthermore, the resulting language has the capability of combining both
history- and future-sensitive policies, providing even more flexibility and
power.Comment: In Proceedings ICE 2010, arXiv:1010.530
Automating Agential Reasoning: Proof-Calculi and Syntactic Decidability for STIT Logics
This work provides proof-search algorithms and automated counter-model extraction for a class of STIT logics. With this, we answer an open problem concerning syntactic decision procedures and cut-free calculi for STIT logics. A new class of cut-free complete labelled sequent calculi G3LdmL^m_n, for multi-agent STIT with at most n-many choices, is introduced. We refine the calculi G3LdmL^m_n through the use of propagation rules and demonstrate the admissibility of their structural rules, resulting in auxiliary calculi Ldm^m_nL. In the single-agent case, we show that the refined calculi Ldm^m_nL derive theorems within a restricted class of (forestlike) sequents, allowing us to provide proof-search algorithms that decide single-agent STIT logics. We prove that the proof-search algorithms are correct and terminate
- …