492 research outputs found
The Bohr radius of the -dimensional polydisk is equivalent to
We show that the Bohr radius of the polydisk behaves
asymptotically as . Our argument is based on a new
interpolative approach to the Bohnenblust--Hille inequalities which allows us
to prove that the polynomial Bohnenblust--Hille inequality is subexponential.Comment: The introduction was expanded and some misprints correcte
On the minimal number of matrices which form a locally hypercyclic, non-hypercyclic tuple
In this paper we extend the notion of a locally hypercyclic operator to that
of a locally hypercyclic tuple of operators. We then show that the class of
hypercyclic tuples of operators forms a proper subclass to that of locally
hypercyclic tuples of operators. What is rather remarkable is that in every
finite dimensional vector space over or , a pair of
commuting matrices exists which forms a locally hypercyclic, non-hypercyclic
tuple. This comes in direct contrast to the case of hypercyclic tuples where
the minimal number of matrices required for hypercyclicity is related to the
dimension of the vector space. In this direction we prove that the minimal
number of diagonal matrices required to form a hypercyclic tuple on
is , thus complementing a recent result due to Feldman.Comment: 15 pages, title changed, section for infinite dimensional spaces
adde
Impact of pump phase modulation on system performance of fibre-optical parametric amplifiers
Bit error rate induced in a parametric amplifier has been measured with a 10 Gbit=s line rate. It is shown experimentally that the phase modulation of the pump distorts the mark level of the channel and may cause system penalty. Different phase modulation schemes have been compared
Impact of pump OSNR on noise figure for fiber-optical parametric amplifiers
Electrical measurements of the noise figure of a fiberoptical parametric amplifier are presented and compared with optical measurements. The transfer of pump noise by four-wave mixing was clearly demonstrated. A numerical model was developed to simulate the transfer of pump noise and validated by these measurements. Using this model, we determine, for practical systems, a minimum required pump optical signal-to-noise ratio of 65 dB
Almost sure-sign convergence of Hardy-type Dirichlet series
[EN] Hartman proved in 1939 that the width of the largest possible strip in the complex plane on which a Dirichlet series is uniformly a.s.- sign convergent (i.e., converges uniformly for almost all sequences of signs epsilon (n) = +/- 1) but does not convergent absolutely, equals 1/2. We study this result from a more modern point of view within the framework of so-called Hardytype Dirichlet series with values in a Banach space.Supported by CONICET-PIP 11220130100329CO, PICT 2015-2299 and UBACyT 20020130100474BA.
Supported by MICINN MTM2017-83262-C2-1-P.
Supported by MICINN MTM2017-83262-C2-1-P and UPV-SP20120700.Carando, D.; Defant, A.; Sevilla Peris, P. (2018). Almost sure-sign convergence of Hardy-type Dirichlet series. Journal d Analyse MathĂ©matique. 135(1):225-247. https://doi.org/10.1007/s11854-018-0034-yS2252471351A. Aleman, J.-F. Olsen, and E. Saksman, Fourier multipliers for Hardy spaces of Dirichlet series, Int. Math. Res. Not. IMRN 16 (2014), 4368â4378.R. Balasubramanian, B. Calado, and H. QueffĂ©lec, The Bohr inequality for ordinary Dirichlet series Studia Math. 175 (2006), 285â304.F. Bayart, Hardy spaces of Dirichlet series and their composition operators, Monatsh. Math. 136 (2002), 203â236.F. Bayart, A. Defant, L. Frerick, M. Maestre, and P. Sevilla-Peris, Monomial series expansion of Hp-functions and multipliers ofHp-Dirichlet series, Math. Ann. 368 (2017), 837â876.F. Bayart, D. Pellegrino, and J. B. Seoane-SepĂșlveda, The Bohr radius of the n-dimensional polydisk is equivalent to ( log n ) / n , Adv. Math. 264 (2014), 726â746.F. Bayart, H. QueffĂ©lec, and K. Seip, Approximation numbers of composition operators on Hp spaces of Dirichlet series, Ann. Inst. Fourier (Grenoble) 66 (2016), 551â588.H. F. Bohnenblust and E. Hille. On the absolute convergence of Dirichlet series, Ann. of Math. (2) 32 (1931), 600â622.H. Bohr, Ăber die Bedeutung der Potenzreihen unendlich vieler Variablen in der Theorie der Dirichletâschen Reihen â a n n s , Nachr. Ges.Wiss. Göttingen, Math. Phys. Kl., 1913, pp. 441â488.D. Carando, A. Defant, and P. Sevilla-Peris, Bohrâs absolute convergence problem for Hp- Dirichlet series in Banach spaces, Anal. PDE 7 (2014), 513â527.D. Carando, A. Defant, and P. Sevilla-Peris, Some polynomial versions of cotype and applications, J. Funct. Anal. 270 (2016), 68â87.B. J. Cole and T. W. Gamelin, Representing measures and Hardy spaces for the infinite polydisk algebra, Proc. London Math. Soc. (3) 53 (1986), 112â142.R. de la BretĂšche. Sur lâordre de grandeur des polynĂŽmes de Dirichlet, Acta Arith. 134 (2008), 141â148.A. Defant, L. Frerick, J. Ortega-CerdĂ , M. OunĂ€ies, and K. Seip, The Bohnenblust-Hille inequality for homogeneous polynomials is hypercontractive, Ann. of Math. (2) 174 (2011), 485â497.A. Defant, D. GarcĂa, M. Maestre, and D. PĂ©rez-GarcĂa, Bohrâs strip for vector valued Dirichlet series, Math. Ann. 342 (2008), 533â555.A. Defant, M. Maestre, and U. Schwarting, Bohr radii of vector valued holomorphic functions, Adv. Math. 231 (2012), 2837â2857.A. Defant and A. PĂ©rez, Hardy spaces of vector-valued Dirichlet series, StudiaMath. (to appear), 2018 DOI: 10.4064/sm170303-26-7.A. Defant, U. Schwarting, and P. Sevilla-Peris, Estimates for vector valued Dirichlet polynomials, Monatsh. Math. 175 (2014), 89â116.J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge University Press, Cambridge, 1995.P. Hartman, On Dirichlet series involving random coefficients, Amer. J. Math. 61 (1939), 955â964.H. Hedenmalm, P. Lindqvist, and K. Seip, A Hilbert space of Dirichlet series and systems of dilated functions in L2(0, 1), Duke Math. J. 86 (1997), 1â37.A. Hildebrand, and G. Tenenbaum, Integers without large prime factors, J. Thor. Nombres Bordeaux 5 (1993), 411â484.S. V. Konyagin and H. QueffĂ©lec, The translation 1/2 in the theory of Dirichlet series, Real Anal. Exchange 27 (2001/02) 155â175.J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. II, Springer-Verlag, Berlin, 1979.B. Maurizi and H. QueffĂ©lec, Some remarks on the algebra of bounded Dirichlet series, J. Fourier Anal. Appl. 16 (2010), 676â692.H. QueffĂ©lec, H. Bohrâs vision of ordinary Dirichlet series; old and new results, J. Anal. 3 (1995), 43â60.H. QueffĂ©lec and M. QueffĂ©lec, Diophantine Approximation and Dirichlet Series, Hindustan Book Agency, New Delhi, 2013.G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge University Press, Cambridge, 1995
Hypercyclic algebras for convolution and composition operators
[EN] We provide an alternative proof to those by Shkarin and by Bayart and Matheron that the operator D of complex differentiation supports a hypercyclic algebra on the space of entire functions. In particular we obtain hypercyclic algebras for many convolution operators not induced by polynomials, such as , , or , where . In contrast, weighted composition operators on function algebras of analytic functions on a plane domain fail to support supercyclic algebras.This work is supported in part by MEC, Project MTM 2016-7963-P. We also thank Angeles Prieto for comments and suggestions.BĂšs, J.; Conejero, JA.; Papathanasiou, D. (2018). Hypercyclic algebras for convolution and composition operators. Journal of Functional Analysis. 274(10):2884-2905. https://doi.org/10.1016/j.jfa.2018.02.003S288429052741
A note on abscissas of Dirichlet series
[EN] We present an abstract approach to the abscissas of convergence of vector-valued Dirichlet series. As a consequence we deduce that the abscissas for Hardy spaces of Dirichlet series are all equal. We also introduce and study weak versions of the abscissas for scalar-valued Dirichlet series.A. Defant: Partially supported by MINECO and FEDER MTM2017-83262-C2-1-P.
A. PĂ©rez: Supported by La Caixa Foundation, MINECO and FEDER MTM2014-57838-C2-1-P and
FundaciĂłn SĂ©neca - RegiĂłn de Murcia (CARM 19368/PI/14).
P. Sevilla-Peris: Supported by MINECO and FEDER MTM2017-83262-C2-1-P.Defant, A.; PĂ©rez, A.; Sevilla Peris, P. (2019). A note on abscissas of Dirichlet series. Revista de la Real Academia de Ciencias Exactas FĂsicas y Naturales Serie A MatemĂĄticas. 113(3):2639-2653. https://doi.org/10.1007/s13398-019-00647-yS263926531133Bayart, F.: Hardy spaces of Dirichlet series and their composition operators. Mon. Math. 136(3), 203â236 (2002)Bohnenblust, H.F., Hille, E.: On the absolute convergence of Dirichlet series. Ann Math. 32(3), 600â622 (1931)Bohr, H.: Ăber die Bedeutung der Potenzreihen unendlich vieler Variablen in der Theorie der Dirichletâschen Reihen â a n n s . Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl., pp. 441â488 (1913)Bonet, J.: Abscissas of weak convergence of vector valued Dirichlet series. J. Funct. Anal. 269(12), 3914â3927 (2015)Carando, D., Defant, A., Sevilla-Peris, P.: Bohrâs absolute convergence problem for H p -Dirichlet series in Banach spaces. Anal. PDE 7(2), 513â527 (2014)Carando, D., Defant, A., Sevilla-Peris, P.: Some polynomial versions of cotype and applications. J. Funct. Anal. 270(1), 68â87 (2016)Defant, A., GarcĂa, D., Maestre, M., PĂ©rez-GarcĂa, D.: Bohrâs strip for vector valued Dirichlet series. Math. Ann. 342(3), 533â555 (2008)Defant, A., GarcĂa, D., Maestre, M., SevillaâPeris, P.: Dirichlet Series and Holomorphic Funcions in High Dimensions, vol. 37 of New Mathematical Monographs. Cambridge University Press, Cambridge (2019)Defant, A., PĂ©rez, A.: Optimal comparison of the p -norms of Dirichlet polynomials. Israel J. Math. 221(2), 837â852 (2017)Defant, A., PĂ©rez, A.: Hardy spaces of vector-valued Dirichlet series. Studia Math. 243(1), 53â78 (2018)Diestel, J., Jarchow, H., Tonge, A.: Absolutely summing operators, vol. 43 of Cambridge studies in advanced mathematics. Cambridge University Press, Cambridge (1995)Maurizi, B., QueffĂ©lec, H.: Some remarks on the algebra of bounded Dirichlet series. J. Fourier Anal. Appl. 16(5), 676â692 (2010)QueffĂ©lec, H., QueffĂ©lec, M.: Diophantine approximation and Dirichlet series, vol. 2 of HarishâChandra research institute lecture notes. Hindustan Book Agency, New Delhi (2013
Two 'transitions': the political economy of Joyce Banda's rise to power and the related role of civil society organisations in Malawi
This is an Accepted Manuscript of an article published by Taylor & Francis in Review of African Political Economy on 21/07/2014, available online: http://www.tandfonline.com/doi/abs/10.1080/03056244.2014.90194
Multipliers of Dirichlet series and monomial series expansions of holomorphic functions in infinitely many variables
[EN] Let H-infinity be the set of all ordinary Dirichlet series D = Sigma(n) a(n)(n-1) ann-s representing bounded holomorphic functions on the right half plane. A completely multiplicative sequence (b(n)) of complex numbers is said to be an l(1)-multiplier for H-infinity whenever Sigma(n vertical bar)a(n)b(n vertical bar) < infinity for every D is an element of H-infinity. We study the problem of describing such sequences (b(n)) in terms of the asymptotic decay of the subsequence (b(pj)), where p(j) denotes the j th prime number. Given a completely multiplicative sequence b = (b(n)) we prove (among other results): b is an l(1)-multiplier for H-infinity provided vertical bar b(pj)vertical bar < 1 for all j and (lim(n)) over bar 1/log(n) Sigma(n)(j=1) b(p j)*(2) < 1, and conversely, if b is an l(1)-multiplier for H-infinity, then vertical bar b(pj)vertical bar < 1 for all j and (lim(n)) over bar 1/log(n) Sigma(n)(j=1) b(p j)*(2) <= 1 (here b* stands for the decreasing rearrangement of b). Following an ingenious idea of Harald Bohr it turns out that this problem is intimately related with the question of characterizing those sequences z in the infinite dimensional polydisk D-infinity (the open unit ball of l(infinity)) for which every bounded and holomorphic function f on D-infinity has an absolutely convergent monomial series expansion Sigma(alpha) partial derivative alpha f (0)/alpha! z alpha. Moreover, we study analogous problems in Hardy spaces of Dirichlet series and Hardy spaces of functions on the infinite dimensional polytorus T-infinity.The second, fourth and fifth authors were supported by MINECO and FEDER Project MTM2014-57838-C2-2-P. The fourth author was also supported by PrometeoII/2013/013. The fifth author was also supported by project SP-UPV20120700.Bayart, F.; Defant, A.; Frerick, L.; Maestre, M.; Sevilla Peris, P. (2017). Multipliers of Dirichlet series and monomial series expansions of holomorphic functions in infinitely many variables. Mathematische Annalen. 368(1-2):837-876. https://doi.org/10.1007/s00208-016-1511-1S8378763681-2Aleman, A., Olsen, J.-F., Saksman, E.: Fatou and brother Riesz theorems in the infinite-dimensional polydisc. arXiv:1512.01509Balasubramanian, R., Calado, B., QueffĂ©lec, H.: The Bohr inequality for ordinary Dirichlet series. Studia Math. 175(3), 285â304 (2006)Bayart, F.: Hardy spaces of Dirichlet series and their composition operators. Monatsh. Math. 136(3), 203â236 (2002)Bayart, F., Pellegrino, D., Seoane-SepĂșlveda, J.B.: The Bohr radius of the n -dimensional polydisk is equivalent to ( log n ) / n . Adv. Math. 264:726â746 (2014)Bohnenblust, H.F., Hille, E.: On the absolute convergence of Dirichlet series. Ann. Math. 32(3), 600â622 (1931)Bohr, H.: Ăber die Bedeutung der Potenzreihen unendlich vieler Variablen in der Theorie der Dirichletâschen Reihen â a n n s . Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl. 441â488 (1913)Bohr, H.: Ăber die gleichmĂ€Ăige Konvergenz Dirichletscher Reihen. J. Reine Angew. Math. 143, 203â211 (1913)Cole, B.J., Gamelin., T.W.: Representing measures and Hardy spaces for the infinite polydisk algebra. Proc. Lond. Math. Soc. 53(1), 112â142 (1986)Davie, A.M., Gamelin, T.W.: A theorem on polynomial-star approximation. Proc. Am. Math. Soc. 106(2), 351â356 (1989)de la BretĂšche, R.: Sur lâordre de grandeur des polynĂŽmes de Dirichlet. Acta Arith. 134(2), 141â148 (2008)Defant, A., Frerick, L., Ortega-CerdĂ , J., OunaĂŻes, M., Seip, K.: The BohnenblustâHille inequality for homogeneous polynomials is hypercontractive. Ann. Math. 174(1), 485â497 (2011)Defant, A., GarcĂa, D., Maestre, M.: New strips of convergence for Dirichlet series. Publ. Mat. 54(2), 369â388 (2010)Defant, A., GarcĂa, D., Maestre, M., PĂ©rez-GarcĂa, D.: Bohrâs strip for vector valued Dirichlet series. Math. Ann. 342(3), 533â555 (2008)Defant, A., Maestre, M., Prengel, C.: Domains of convergence for monomial expansions of holomorphic functions in infinitely many variables. J. Reine Angew. Math. 634, 13â49 (2009)Dineen, S.: Complex Analysis on Infinite-dimensional Spaces. Springer Monographs in Mathematics. Springer-Verlag London Ltd, London (1999)Floret, K.: Natural norms on symmetric tensor products of normed spaces. Note Mat. 17(153â188), 1997 (1999)Harris, L. A.: Bounds on the derivatives of holomorphic functions of vectors. In: Analyse fonctionnelle et applications (Comptes Rendus Colloq. Analyse, Inst. Mat., Univ. Federal Rio de Janeiro, Rio de Janeiro, 1972), pp. 145â163. ActualitĂ©s Aci. Indust., No. 1367. Hermann, Paris (1975)Hedenmalm, H., Lindqvist, P., Seip, K.: A Hilbert space of Dirichlet series and systems of dilated functions in L 2 ( 0 , 1 ) . Duke Math. J. 86(1), 1â37 (1997)Helson, H., Lowdenslager, D.: Prediction theory and Fourier series in several variables. Acta Math. 99, 165â202 (1958)Hibert, D.: Gesammelte Abhandlungen (Band 3). Verlag von Julius Springer, Berlin (1935)Hilbert, D.: Wesen und Ziele einer Analysis der unendlichvielen unabhĂ€ngigen Variablen. Rend. del Circolo Mat. di Palermo 27, 59â74 (1909)Kahane, J.-P.: Some Random Series of Functions, Volume 5 of Cambridge Studies in Advanced Mathematics, second edn. Cambridge University Press, Cambridge (1985)Konyagin, S.V., QueffĂ©lec, H.: The translation 1 2 in the theory of Dirichlet series. Real Anal. Exchange 27(1):155â175 (2001/2002)Maurizi, B., QueffĂ©lec, H.: Some remarks on the algebra of bounded Dirichlet series. J. Fourier Anal. Appl. 16(5), 676â692 (2010)QueffĂ©lec, H.: H. Bohrâs vision of ordinary Dirichlet series; old and new results. J. Anal. 3, 43â60 (1995)QueffĂ©lec, H., QueffĂ©lec, M.: Diophantine Approximation and Dirichlet Series. HRI Lecture Notes Series, New Delhi (2013)Rudin, W.: Function Theory in Polydisks. W. A. Benjamin Inc, New York (1969)Toeplitz, O.: Ăber eine bei den Dirichletschen Reihen auftretende Aufgabe aus der Theorie der Potenzreihen von unendlichvielen VerĂ€nderlichen. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, pp. 417â432 (1913)Weissler, F.B.: Logarithmic Sobolev inequalities and hypercontractive estimates on the circle. J. Funct. Anal. 37(2), 218â234 (1980)Wojtaszczyk, P.: Banach Spaces for Analysts, Volume 25 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1991
- âŠ