666 research outputs found
Influences of physical oceanographic processes on chlorophyll distributions in coastal and estuarine waters of the South Atlantic Bight
Coastal and estuarine waters of the South Atlantic Bight are highly productive, with primary production of 600-700 gC/m2/y. While controls and fate of this production are conceptually well understood, the importance of meteorology and physical circulation processes on phytoplankton has not received equivalent attention. Here, we describe the effects of wind stress and tidal currents on temporal and spatial distributions of phytoplankton biomass represented as chlorophyll a (chl a). Moored instruments were deployed and shipboard sampling was conducted in the North Edisto estuary (South Carolina) and adjacent inner shelf waters during four, two-week field studies in May and August 1993, and June and September 1994. Local wind regimes induced upwelling- and downwelling-favorable conditions which strengthened or reduced vertical density stratification in the coastal frontal zone, respectively, and shifted the location of the front. Chl a in shelf waters was more or less homogenous independent of the wind regime, while chl a on the estuary delta was generally vertically stratified. Within the estuary, chl a concentrations were positively correlated with the alongshore component of wind stress; chl a was not correlated with the weaker cross-shelf component of wind stress. Highest chl a occurred during strong downwelling-favorable events. The quick response time to wind forcing (6-12 hrs) implied a direct effect on chl a distributions and not a stimulation of growth processes. The source of the elevated chl a in response to wind forcing was apparently resuspension of settled and epibenthic algal cells. Tidal currents also influenced the vertical distribution and concentration of chl a. Time series sampling on the estuary delta showed that, with increasing velocity of ebb and flood tide currents, the relative contributions of pennate and centric diatoms with attached detritus and sand grains also increased, indicating that tidal resuspension of settled and epibenthic microalgae also occurred. Vertical stratification of chl a (highest concentrations near the bottom) began to degrade upon mixing by tidal currents with velocities as low as 10 cm/sec. Homogenization of 5-7 m water columns was fully achieved at velocities of 20-30 cm/sec. The data document the direct and comparatively immediate (timescales of minuteshours) impact of tidal and wind energy on concentrations and distribution patterns of phytoplankton in coastal and estuarine waters of the South Atlantic Bight
Dallas with balls: televized sport, soap opera and male and female pleasures
Two of the most popular of television genres, soap opera and sports coverage have been very much differentiated along gender lines in terms of their audiences. Soap opera has been regarded very much as a 'gynocentric' genre with a large female viewing audience while the audiences for television sport have been predominantly male. Gender differentiation between the genres has had implications for the popular image of each. Soap opera has been perceived as inferior; as mere fantasy and escapism for women while television sports has been perceived as a legitimate, even edifying experience for men.
In this article the authors challenge the view that soap opera and television sport are radically different and argue that they are, in fact, very similar in a number of significant ways. They suggest that both genres invoke similar structures of feeling and sensibility in their respective audiences and that television sport is a 'male soap opera'. They consider the ways in which the viewing context of each genre is related to domestic life and leisure, the ways in which the textual structure and conventions of each genre invoke emotional identification, and finally, the ways in which both genres re-affirm gender identities
Multiplexed dispersive readout of superconducting phase qubits
We introduce a frequency-multiplexed readout scheme for superconducting phase
qubits. Using a quantum circuit with four phase qubits, we couple each qubit to
a separate lumped-element superconducting readout resonator, with the readout
resonators connected in parallel to a single measurement line. The readout
resonators and control electronics are designed so that all four qubits can be
read out simultaneously using frequency multiplexing on the one measurement
line. This technology provides a highly efficient and compact means for reading
out multiple qubits, a significant advantage for scaling up to larger numbers
of qubits.Comment: 4 pages, 4 figure
Does the group leader matter? The impact of monitoring activities and social ties of group leaders on the repayment performance of groupbased lending Eritrea
This paper analyzes whether the effects of monitoring and social ties of the group leader and other group members on repayment performance of groups differ, using data from an extensive questionnaire held in Eritrea among participants of 102 groups. We hypothesize that the monitoring activities and social ties of the group leader have a stronger positive impact on the repayment performance of groups. The results show that social ties of the group leader do have a positive effect on repayment performance of groups, whereas this is not true for social ties of other group members. We do not find evidence for the hypothesis that monitoring activities of the group leader have a stronger positive impact on group repayment performance. All variables measuring monitoring activities, either of the group leader or the other group members, are found to be statistically insignificant.
Spectral signatures of many-body localization with interacting photons
Statistical mechanics is founded on the assumption that a system can reach
thermal equilibrium, regardless of the starting state. Interactions between
particles facilitate thermalization, but, can interacting systems always
equilibrate regardless of parameter values\,? The energy spectrum of a system
can answer this question and reveal the nature of the underlying phases.
However, most experimental techniques only indirectly probe the many-body
energy spectrum. Using a chain of nine superconducting qubits, we implement a
novel technique for directly resolving the energy levels of interacting
photons. We benchmark this method by capturing the intricate energy spectrum
predicted for 2D electrons in a magnetic field, the Hofstadter butterfly. By
increasing disorder, the spatial extent of energy eigenstates at the edge of
the energy band shrink, suggesting the formation of a mobility edge. At strong
disorder, the energy levels cease to repel one another and their statistics
approaches a Poisson distribution - the hallmark of transition from the
thermalized to the many-body localized phase. Our work introduces a new
many-body spectroscopy technique to study quantum phases of matter
- …