44,135 research outputs found

    Au9+ swift heavy ion irradiation of Zn[CS(NH2)2]3SO4 crystal: Crystalline perfection and optical properties

    Full text link
    The single crystal of tris(thiourea)zinc sulphate (Zn[CS(NH2)2]3SO4) was irradiated by 150 MeV Au9+ swift heavy ions and analyzed in comparison with pure crystal for crystalline perfection and optical properties. The Fourier transform infrared and x-ray powder diffraction inferred that swift ions lead the disordering and breaking of molecular bonds in lattice without formation of new structural phases. High resolution X-ray diffraction (HRXRD) revealed the abundance of point defects, and formation of mosaics and low angle grain boundaries in the irradiated region of crystal. The swift ion irradiation found to affect the lattice vibrational modes and functional groups significantly. The defects induced by heavy ions act as the color centers and resulted in enhance of photoluminescence emission intensity. The optical transparency and band gap found to be decreased.Comment: 7 page

    Statistical Mechanics of DNA Rupture: Theory and Simulations

    Full text link
    We study the effects of the shear force on the rupture mechanism on a double stranded DNA. Motivated by recent experiments, we perform the atomistic simulations with explicit solvent to obtain the distributions of extension in hydrogen and covalent bonds below the rupture force. We obtain a significant difference between the atomistic simulations and the existing results in the iterature based on the coarse-grained models (theory and simulations). We discuss the possible reasons and improve the coarse-grained model by incorporating the consequences of semi-microscopic details of the nucleotides in its description. The distributions obtained by the modified model (simulations and theoretical) are qualitatively similar to the one obtained using atomistic simulations.Comment: 18 pages, 9 figures. Accepted in J. Chem. Phys. (2013). arXiv admin note: text overlap with arXiv:1104.305

    Electronic structure studies of Fe- ZnO nanorods by x-ray absorption fine structure

    Full text link
    We report the electronic structure studies of well characterized polycrystalline Zn_{1-x}Fe_xO (x = 0.0, 0.01, 0.03, and 0.05) nanorods synthesized by a co-precipitation method through x-ray absorption fine structure (XAFS). X-ray diffraction (XRD) reveals that Fe doped ZnO crystallizes in a single phase wurtzite structure without any secondary phase. From the XRD pattern, it is observed that peak positions shift towards lower 2\theta value with Fe doping. The change in the peak positions with increase in Fe contents clearly indicates that Fe ions are replacing Zn ions in the ZnO matrix. Linear combination fittings (LCF) at Fe K-edge demonstrate that Fe is in mixed valent state (Fe3+/Fe2+) with a ratio of ~ 7:3 (Fe3+:Fe2+). XAFS data is successfully fitted to wurtzite structure using IFEFFIT and Artemis. The results indicate that Fe substitutes Zn site in the ZnO matrix in tetrahedral symmetry.Comment: 7 pages, 5 figures, 2 tables, regular articl
    corecore