65,391 research outputs found

    Effects of medium-induced ρω\rho-\omega meson mixing on the equation of state in isospin-asymmetric nuclear matter

    Full text link
    We reexamine effects of the ρω\rho-\omega meson mixing mediated by nucleon polarizations on the symmetry energy in isospin-asymmetric nuclear matter. Taking into account the rearrangement term neglected in previous studies by others, we evaluate the ρω\rho-\omega mixing angle in a novel way within the Relativistic Mean-Field Models with and without chiral limits. It is found that the symmetry energy is significantly softened at high densities contrary to the finding in earlier studies. As the first step of going beyond the lowest-order calculations, we also solve the RPA equation for the ρω\rho-\omega mixing. In this case, it is found that the symmetry energy is not only significantly softened by the ρω\rho-\omega mixing at supra-saturation densities, similar to the lowest-order ρω\rho-\omega mixing, but interestingly also softened at subsaturation densities. In addition, the softening of the symmetry energy at subsaturation densities can be partly suppressed by the nonlinear self-interaction of the σ\sigma meson.Comment: Significant changes made. Accepted version to appear in PRC (2009

    Uniqueness of Bessel models: the archimedean case

    Full text link
    In the archimedean case, we prove uniqueness of Bessel models for general linear groups, unitary groups and orthogonal groups.Comment: 22 page

    Self-consistent triaxial de Zeeuw-Carollo Models

    Full text link
    We use the usual method of Schwarzschild to construct self-consistent solutions for the triaxial de Zeeuw & Carollo (1996) models with central density cusps. ZC96 models are triaxial generalisations of spherical γ\gamma-models of Dehnen whose densities vary as rγr^{-\gamma} near the center and r4r^{-4} at large radii and hence, possess a central density core for γ=0\gamma=0 and cusps for γ>0\gamma > 0. We consider four triaxial models from ZC96, two prolate triaxials: (p,q)=(0.65,0.60)(p, q) = (0.65, 0.60) with γ=1.0\gamma = 1.0 and 1.5, and two oblate triaxials: (p,q)=(0.95,0.60)(p, q) = (0.95, 0.60) with γ=1.0\gamma = 1.0 and 1.5. We compute 4500 orbits in each model for time periods of 105TD10^{5} T_{D}. We find that a large fraction of the orbits in each model are stochastic by means of their nonzero Liapunov exponents. The stochastic orbits in each model can sustain regular shapes for 103TD\sim 10^{3} T_{D} or longer, which suggests that they diffuse slowly through their allowed phase-space. Except for the oblate triaxial models with γ=1.0\gamma =1.0, our attempts to construct self-consistent solutions employing only the regular orbits fail for the remaining three models. However, the self-consistent solutions are found to exist for all models when the stochastic and regular orbits are treated in the same way because the mixing-time, 104TD\sim10^{4} T_{D}, is shorter than the integration time, 105TD10^{5} T_{D}. Moreover, the ``fully-mixed'' solutions can also be constructed for all models when the stochastic orbits are fully mixed at 15 lowest energy shells. Thus, we conclude that the self-consistent solutions exist for our selected prolate and oblate triaxial models with γ=1.0\gamma = 1.0 and 1.5.Comment: 6 Pages, 3 Figures, 2 Tables. Accepted for Publication in A&

    Phase-reference VLBI Observations of the Compact Steep-Spectrum Source 3C 138

    Full text link
    We investigate a phase-reference VLBI observation that was conducted at 15.4 GHz by fast switching VLBA antennas between the compact steep-spectrum radio source 3C 138 and the quasar PKS 0528+134 which are about 4^\circ away on the sky. By comparing the phase-reference mapping with the conventional hybrid mapping, we demonstrate the feasibility of high precision astrometric measurements for sources separated by 4^\circ. VLBI phase-reference mapping preserves the relative phase information, and thus provides an accurate relative position between 3C 138 and PKS 0528+134 of Δα=9m46s.531000±0s.000003\Delta\alpha=-9^m46^s.531000\pm0^s.000003 and Δδ=3626.90311±0.00007\Delta\delta=3^\circ6^\prime26^{\prime\prime}.90311\pm0^{\prime\prime}.00007 (J2000.0) in right ascension and declination, respectively. This gives an improved position of the nucleus (component A) of 3C 138 in J2000.0 to be RA=05h21m9s.88574805^h 21^m 9^s.885748 and Dec=163822.0526116^\circ 38' 22''.05261 under the assumption that the position of calibrator PKS 0528+134 is correct. We further made a hybrid map by performing several iterations of CLEAN and self-calibration on the phase-referenced data with the phase-reference map as an input model for the first phase self-calibration. Compared with the hybrid map from the limited visibility data directly obtained from fringe fitting 3C 138 data, this map has a similar dynamic range, but a higher angular resolution. Therefore, phase-reference technique is not only a means of phase connection, but also a means of increasing phase coherence time allowing self-calibration technique to be applied to much weaker sources.Comment: 9 pages plus 2 figures, accepted by PASJ (Vol.58 No.6

    The response of hot wires in high Reynolds-number turbulent pipe flow

    Get PDF
    Issues concerning the accuracy of hot-wire measurements in turbulent pipe flow are addressed for pipe Reynolds numbers up to 6 × 106 and hot-wire Reynolds numbers up to Rew ap 250. These include the optimization of spatial and temporal resolution and the associated feature of signal-to-noise ratio. Very high wire Reynolds numbers enable the use of wires with reduced length-to-diameter ratios compared to those typical of atmospheric conditions owing to increased wire Nusselt numbers. Simulation of the steady-state heat balance for the wire and the unetched portion of wire are used to assess static end-conduction effects: they are used to calculate wire Biot numbers, \sqrt{c_0}l , and fractional end-conduction losses, σ, which confirm the 'conduction-only' theory described by Corrsin. They show that, at Rew ap 250, the wire length-to-diameter ratio can be reduced to about 50, while keeping \sqrt{c_0}l\gt3 and σ < 7% in common with accepted limits at Rew ap 3. It is shown that these limits depend additionally on the choice of wire material and the length of unetched wire. The dynamic effects of end-cooling are also assessed using the conduction-only theory

    Effect of Statistical Fluctuation in Monte Carlo Based Photon Beam Dose Calculation on Gamma Index Evaluation

    Full text link
    The gamma-index test has been commonly adopted to quantify the degree of agreement between a reference dose distribution and an evaluation dose distribution. Monte Carlo (MC) simulation has been widely used for the radiotherapy dose calculation for both clinical and research purposes. The goal of this work is to investigate both theoretically and experimentally the impact of the MC statistical fluctuation on the gamma-index test when the fluctuation exists in the reference, the evaluation, or both dose distributions. To the first order approximation, we theoretically demonstrated in a simplified model that the statistical fluctuation tends to overestimate gamma-index values when existing in the reference dose distribution and underestimate gamma-index values when existing in the evaluation dose distribution given the original gamma-index is relatively large for the statistical fluctuation. Our numerical experiments using clinical photon radiation therapy cases have shown that 1) when performing a gamma-index test between an MC reference dose and a non-MC evaluation dose, the average gamma-index is overestimated and the passing rate decreases with the increase of the noise level in the reference dose; 2) when performing a gamma-index test between a non-MC reference dose and an MC evaluation dose, the average gamma-index is underestimated when they are within the clinically relevant range and the passing rate increases with the increase of the noise level in the evaluation dose; 3) when performing a gamma-index test between an MC reference dose and an MC evaluation dose, the passing rate is overestimated due to the noise in the evaluation dose and underestimated due to the noise in the reference dose. We conclude that the gamma-index test should be used with caution when comparing dose distributions computed with Monte Carlo simulation

    Finite-Volume Energy Spectrum, Fractionalized Strings, and Low-Energy Effective Field Theory for the Quantum Dimer Model on the Square Lattice

    Get PDF
    We present detailed analytic calculations of finite-volume energy spectra, mean field theory, as well as a systematic low-energy effective field theory for the square lattice quantum dimer model. The analytic considerations explain why a string connecting two external static charges in the confining columnar phase fractionalizes into eight distinct strands with electric flux 14\frac{1}{4}. An emergent approximate spontaneously broken SO(2)SO(2) symmetry gives rise to a pseudo-Goldstone boson. Remarkably, this soft phonon-like excitation, which is massless at the Rokhsar-Kivelson (RK) point, exists far beyond this point. The Goldstone physics is captured by a systematic low-energy effective field theory. We determine its low-energy parameters by matching the analytic effective field theory with exact diagonalization results and Monte Carlo data. This confirms that the model exists in the columnar (and not in a plaquette or mixed) phase all the way to the RK point.Comment: 35 pages, 16 figure
    corecore