8,636 research outputs found

    Longitudinal top polarisation measurement and anomalous WtbWtb coupling

    Full text link
    Kinematical distributions of decay products of the top quark carry information on the polarisation of the top as well as on any possible new physics in the decay of the top quark. We construct observables in the form of asymmetries in the kinematical distributions to probe their effects. Charged-lepton angular distributions in the decay are insensitive to anomalous couplings to leading order. Hence these can be a robust probe of top polarisation. However, these are difficult to measure in the case of highly boosted top quarks as compared to energy distributions of decay products. These are then sensitive, in general, to both top polarisation and top anomalous couplings. We compare various asymmetries for their sensitivities to the longitudinal polarisation of the top quark as well as to possible new physics in the WtbWtb vertex, paying special attention to the case of highly boosted top quarks. We perform a χ2\chi ^2- analysis to determine the regions in the longitudinal polarisation of the top quark and the couplings of the WtbWtb vertex constrained by different combinations of the asymmetries. Moreover, we find that use of observables sensitive to the longitudinal top polarisation can add to the sensitivity to which the WtbWtb vertex can be probed.Comment: significantly revised version, clarifications on the term 'polarisation' added, new references added, the title modified, 41 figures. Accepted for publication in EPJ

    Evidence for two spin-glass transitions with magnetoelastic and magnetoelectric couplings in the multiferroic (Bi1x_{1-x}Bax_x)(Fe1x_{1-x}Tix_x)O3_3 system

    Full text link
    For disordered Heisenberg systems with small single ion anisotropy, two spin glass transitions below the long range ordered phase transition temperature has been predicted theoretically for compositions close to the percolation threshold. Experimental verification of these predictions is still controversial for conventional spin glasses. We show that multiferroic spin glass systems can provide a unique platform for verifying these theoretical predictions via a study of change in magnetoelastic and magnetoelectric couplings, obtained from an analysis of diffraction data, at the spin glass transition temperatures. Results of macroscopic and microscopic (x-ray and neutron scattering) measurements are presented on disordered BiFeO3, a canonical Heisenberg system with small single ion anisotropy, which reveal appearance of two spin glass phases SG1 and SG2 in coexistence with the LRO phase below the A-T and G-T lines. It is shown that the temperature dependence of the integrated intensity of the antiferromagnetic peak shows dips with respect to the Brillouin function behaviour around the SG1 and SG2 transition temperatures. The ferroelectric polarisation changes significantly at the two spin glass transition temperatures. These results, obtained using microscopic techniques, clearly demonstrate that the SG1 and SG2 transitions occur on the same magnetic sublattice and are intrinsic to the system. We also construct a phase diagram showing all the magnetic phases in BF-xBT system. While our results on the two spin glass transitions support the theoretical predictions, it also raises several open questions which need to be addressed by revisiting the existing theories of spin glass transitions by taking into account the effect of magnetoelastic and magnetoelectric couplings as well as electromagnons.Comment: 59 pages 21 figure

    Neel to staggered dimer order transition in a generalized honeycomb lattice Heisenberg model

    Full text link
    We study a generalized honeycomb lattice spin-1/2 Heisenberg model with nearest-neighbor antiferromagnetic 2-spin exchange, and competing 4-spin interactions which serve to stabilize a staggered dimer state which breaks lattice rotational symmetry. Using a combination of quantum Monte Carlo numerics, spin wave theory, and bond operator theory, we show that this model undergoes a strong first-order transition between a Neel state and a staggered dimer state upon increasing the strength of the 4-spin interactions. We attribute the strong first order character of this transition to the spinless nature of the core of point-like Z(3) vortices obtained in the staggered dimer state. Unlike in the case of a columnar dimer state, disordering such vortices in the staggered dimer state does not naturally lead to magnetic order, suggesting that, in this model, the dimer and Neel order parameters should be thought of as independent fields as in conventional Landau theory.Comment: 13 pages, 10 fig

    Singular value decomposition in parametrised tests of post-Newtonian theory

    Full text link
    Various coefficients of the 3.5 post-Newtonian (PN) phasing formula of non-spinning compact binaries moving in circular orbits is fully characterized by the two component masses. If two of these coefficients are independently measured, the masses can be estimated. Future gravitational wave observations could measure many of the 8 independent PN coefficients calculated to date. These additional measurements can be used to test the PN predictions of the underlying theory of gravity. Since all of these parameters are functions of the two component masses, there is strong correlation between the parameters when treated independently. Using Singular Value Decomposition of the Fisher information matrix, we remove this correlations and obtain a new set of parameters which are linear combinations of the original phasing coefficients. We show that the new set of parameters can be estimated with significantly improved accuracies which has implications for the ongoing efforts to implement parametrised tests of PN theory in the data analysis pipelines.Comment: 17 pages, 6 figures, Accepted for publication in Classical and Quantum Gravity (Matches with the published version

    Factors Affecting the Adoption of Genetically Modified Crops by Young and Beginning U.S. Farmers and Ranchers

    Get PDF
    The comprehensive set of programs in the 2008 Farm Bill designed to support Young and Beginning Farmers and Ranchers (YBFR), combined with a substantial amount of resources allocated to each of these programs, can be viewed as an investment in ensuring the future sustainability of the U.S. agriculture system. Understanding the factors that influence YBFR to adopt technology will become increasingly important if YBFR are to succeed. Of particular interest is why YBFR adopt Bt corn, Bt cotton, and HT soybeans. Results conform to a majority of our a priori expectations; YBFRs are more likely to adopt GM crops if they are not a full owner of the farm operation, as sales of the farm operation grow, if the crop is important to their region, and as they become more risk averse.Agricultural and Food Policy,
    corecore