387 research outputs found
Singular behaviour of the electromagnetic field
The singularities of the electromagnetic field are derived to include all the
point-like multipoles representing an electric charge and current distribution.
Firstly derived in the static case, the result is generalized to the dynamic
one. We establish a simple procedure for passing from the first, to the second
case.Comment: Latex, 21.pages, no figure
Phase-plane analysis of Friedmann-Robertson-Walker cosmologies in Brans-Dicke gravity
We present an autonomous phase-plane describing the evolution of
Friedmann-Robertson-Walker models containing a perfect fluid (with barotropic
index gamma) in Brans-Dicke gravity (with Brans-Dicke parameter omega). We find
self-similar fixed points corresponding to Nariai's power-law solutions for
spatially flat models and curvature-scaling solutions for curved models. At
infinite values of the phase-plane variables we recover O'Hanlon and Tupper's
vacuum solutions for spatially flat models and the Milne universe for negative
spatial curvature. We find conditions for the existence and stability of these
critical points and describe the qualitative evolution in all regions of the
(omega,gamma) parameter space for 0-3/2. We show that the
condition for inflation in Brans-Dicke gravity is always stronger than the
general relativistic condition, gamma<2/3.Comment: 24 pages, including 9 figures, LaTe
Stable gravastars with generalised exteriors
New spherically symmetric gravastar solutions, stable to radial
perturbations, are found by utilising the construction of Visser and Wiltshire.
The solutions possess an anti--de Sitter or de Sitter interior and a
Schwarzschild--(anti)--de Sitter or Reissner--Nordstr\"{o}m exterior. We find a
wide range of parameters which allow stable gravastar solutions, and present
the different qualitative behaviours of the equation of state for these
parameters.Comment: 14 pages, 11 figures, to appear in Classical and Quantum Gravit
O(a) errors in 3-D SU(N) Higgs theories
We compute the matching conditions between lattice and continuum 3-D SU(N)
Higgs theories, with both adjoint and fundamental scalars, at O(a), except for
additive corrections to masses and Higgs field operator insertions.Comment: 23 pages with two figures. Added references, a few typos correcte
Searches for phenomena beyond the Standard Model at the LHC with the ATLAS and CMS detectors
The LHC has delivered several fb-1 of data in spring and summer 2011, opening
new windows of opportunity for discovering phenomena beyond the Standard Model.
A summary of the searches conducted by the ATLAS and CMS experiments based on
about 1 fb-1 of data is presented.Comment: Presented at Lepton-Photon 2011, Mumbai, India; 10 pages, 11 figure
Qualitative properties of scalar-tensor theories of Gravity
The qualitative properties of spatially homogeneous stiff perfect fluid and
minimally coupled massless scalar field models within general relativity are
discussed. Consequently, by exploiting the formal equivalence under conformal
transformations and field redefinitions of certain classes of theories of
gravity, the asymptotic properties of spatially homogeneous models in a class
of scalar-tensor theories of gravity that includes the Brans-Dicke theory can
be determined. For example, exact solutions are presented, which are analogues
of the general relativistic Jacobs stiff perfect fluid solutions and vacuum
plane wave solutions, which act as past and future attractors in the class of
spatially homogeneous models in Brans-Dicke theory.Comment: 19 page
Correction Factors for Reactions involving Quark-Antiquark Annihilation or Production
In reactions with production or annihilation, initial-
and final-state interactions give rise to large corrections to the lowest-order
cross sections. We evaluate the correction factor first for low relative
kinetic energies by studying the distortion of the relative wave function. We
then follow the procedure of Schwinger to interpolate this result with the
well-known perturbative QCD vertex correction factors at high energies, to
obtain an explicit semi-empirical correction factor applicable to the whole
range of energies. The correction factor predicts an enhancement for
in color-singlet states and a suppression for color-octet states, the effect
increasing as the relative velocity decreases. Consequences on dilepton
production in the quark-gluon plasma, the Drell-Yan process, and heavy quark
production processes are discussed.Comment: 25 pages (REVTeX), includes 2 uuencoded compressed postscript figure
V,W and X in Technicolour Models
Light techni-fermions and pseudo Goldstone bosons that contribute to the
electroweak radiative correction parameters V,W and X may relax the constraints
on technicolour models from the experimental values of the parameters S and T.
Order of magnitude estimates of the contributions to V,W and X from light
techni-leptons are made when the the techni-neutrino has a small Dirac mass or
a large Majorana mass. The contributions to V,W and X from pseudo Goldstone
bosons are calculated in a gauged chiral Lagrangian. Estimates of V,W and X in
one family technicolour models suggest that the upper bounds on S and T should
be relaxed by between 0.1 and 1 depending upon the precise particle spectrum.Comment: 19 pages + 2 pages of ps figs, SWAT/1
Stars in five dimensional Kaluza Klein gravity
In the five dimensional Kaluza Klein (KK) theory there is a well known class
of static and electromagnetic--free KK--equations characterized by a naked
singularity behavior, namely the Generalized Schwarzschild solution (GSS). We
present here a set of interior solutions of five dimensional KK--equations.
These equations have been numerically integrated to match the GSS in the
vacuum. The solutions are candidates to describe the possible interior perfect
fluid source of the exterior GSS metric and thus they can be models for stars
for static, neutral astrophysical objects in the ordinary (four dimensional)
spacetime.Comment: 15 pages, 8 figures. To be published in EPJ
Cosmology from Moduli Dynamics
We investigate moduli field dynamics in supergravity/M-theory like set ups
where we turn on fluxes along some or all of the extra dimensions. As has been
argued in the context of string theory, we observe that the fluxes tend to
stabilize the squashing (or shape) modes. Generically we find that at late
times the shape is frozen while the radion evolves as a quintessence field. At
earlier times we have a phase of radiation domination where both the volume and
the shape moduli are slowly evolving. However, depending on the initial
conditions and the parameters of the theory, like the value of the fluxes,
curvature of the internal manifold and so on, the dynamics of the internal
manifold can be richer with interesting cosmological consequences, including
inflation.Comment: 38 pages, 6 figures; references adde
- …