297 research outputs found
The alpha-gamma transition of Cerium is entropy-driven
We emphasize, on the basis of experimental data and theoretical calculations,
that the entropic stabilization of the gamma-phase is the main driving force of
the alpha-gamma transition of cerium in a wide temperature range below the
critical point. Using a formulation of the total energy as a functional of the
local density and of the f-orbital local Green's functions, we perform
dynamical mean-field theory calculations within a new implementation based on
the multiple LMTO method, which allows to include semi-core states. Our results
are consistent with the experimental energy differences and with the
qualitative picture of an entropy-driven transition, while also confirming the
appearance of a stabilization energy of the alpha phase as the quasiparticle
Kondo resonance develops.Comment: 5 pages, 6 figure
A Self-consistent DFT+DMFT scheme in the Projector Augmented Wave : Applications to Cerium, Ce2O3 and Pu2O3 with the Hubbard I solver and comparison to DFT+U
An implementation of full self-consistency over the electronic density in the
DFT+DMFT framework on the basis of a plane wave-projector augmented wave (PAW)
DFT code is presented. It allows for an accurate calculation of the total
energy in DFT+DMFT within a plane wave approach. In contrast to frameworks
based on the maximally localized Wannier function, the method is easily applied
to f electron systems, such as cerium, cerium oxide (Ce2O3) and plutonium oxide
(Pu2O3). In order to have a correct and physical calculation of the energy
terms, we find that the calculation of the self-consistent density is
mandatory. The formalism is general and does not depend on the method used to
solve the impurity model. Calculations are carried out within the Hubbard I
approximation, which is fast to solve, and gives a good description of strongly
correlated insulators. We compare the DFT+DMFT and DFT+U solutions, and
underline the qualitative differences of their converged densities. We
emphasize that in contrast to DFT+U, DFT+DMFT does not break the spin and
orbital symmetry. As a consequence, DFT+DMFT implies, on top of a better
physical description of correlated metals and insulators, a reduced occurrence
of unphysical metastable solutions in correlated insulators in comparison to
DFT+U.Comment: 19 pages, 9 figures. This is an author-created, un-copyedited version
of an article accepted for publication in Journal of Physics: Condensed
Matter. IOP Publishing Ltd is not responsible for any errors or omissions in
this version of the manuscript or any version derived from it. The Version of
Record is available online at doi: 10.1088/0953-8984/24/7/07560
Study of the volume and spin collapse in orthoferrite LuFeO_3 using LDA+U
Rare earth (R) orthoferrites RFeO_3 exhibit large volume transitions
associated with a spin collapse. We present here ab initio calculations on
LuFeO_3. We show that taking into account the strong correlation among the
Fe-3d electrons is necessary. Indeed, with the LDA+U method in the Projector
Augmented Wave (PAW), we are able to describe the isostructural phase
transition at 50 GPa, as well as a volume discontinuity of 6.0% at the
transition and the considerable reduction of the magnetic moment on the Fe
ions. We further investigate the effect of the variation of U and J and find a
linear dependence of the transition pressure on these parameters. We give an
interpretation for the non-intuitive effect of J. This emphasizes the need for
a correct determination of these parameters especially when the LDA+U is
applied to systems (e.g in geophysical investigations) where the transition
pressure is a priori unknown
Correlated hopping of electrons: Effect on the Brinkman-Rice transition and the stability of metallic ferromagnetism
We study the Hubbard model with bond-charge interaction (`correlated
hopping') in terms of the Gutzwiller wave function. We show how to express the
Gutzwiller expectation value of the bond-charge interaction in terms of the
correlated momentum-space occupation. This relation is valid in all spatial
dimensions. We find that in infinite dimensions, where the Gutzwiller
approximation becomes exact, the bond-charge interaction lowers the critical
Hubbard interaction for the Brinkman-Rice metal-insulator transition. The
bond-charge interaction also favors ferromagnetic transitions, especially if
the density of states is not symmetric and has a large spectral weight below
the Fermi energy.Comment: 5 pages, 3 figures; minor changes, published versio
Self-consistency over the charge-density in dynamical mean-field theory: a linear muffin-tin implementation and some physical implications
We present a simple implementation of the dynamical mean-field theory
approach to the electronic structure of strongly correlated materials. This
implementation achieves full self-consistency over the charge density, taking
into account correlation-induced changes to the total charge density and
effective Kohn-Sham Hamiltonian. A linear muffin-tin orbital basis-set is used,
and the charge density is computed from moments of the many body
momentum-distribution matrix. The calculation of the total energy is also
considered, with a proper treatment of high-frequency tails of the Green's
function and self-energy. The method is illustrated on two materials with
well-localized 4f electrons, insulating cerium sesquioxide Ce2O3 and the
gamma-phase of metallic cerium, using the Hubbard-I approximation to the
dynamical mean-field self-energy. The momentum-integrated spectral function and
momentum-resolved dispersion of the Hubbard bands are calculated, as well as
the volume-dependence of the total energy. We show that full self-consistency
over the charge density, taking into account its modification by strong
correlations, can be important for the computation of both thermodynamical and
spectral properties, particularly in the case of the oxide material.Comment: 20 pages, 6 figures (submitted in The Physical Review B
Metallic ferromagnetism without exchange splitting
In the band theory of ferromagnetism there is a relative shift in the
position of majority and minority spin bands due to the self-consistent field
due to opposite spin electrons. In the simplest realization, the Stoner model,
the majority and minority spin bands are rigidly shifted with respect to each
other. Here we consider models at the opposite extreme, where there is no
overall shift of the energy bands. Instead, upon spin polarization one of the
bands broadens relative to the other. Ferromagnetism is driven by the resulting
gain in kinetic energy. A signature of this class of mechanisms is that a
transfer of spectral weight in optical absorption from high to low frequencies
occurs upon spin polarization. We show that such models arise from generalized
tight binding models that include off-diagonal matrix elements of the Coulomb
interaction. For certain parameter ranges it is also found that reentrant
ferromagnetism occurs. We examine properties of these models at zero and finite
temperatures, and discuss their possible relevance to real materials
Consistent LDA'+DMFT approach to electronic structure of transition metal oxides: charge transfer insulators and correlated metals
We discuss the recently proposed LDA'+DMFT approach providing consistent
parameter free treatment of the so called double counting problem arising
within the LDA+DMFT hybrid computational method for realistic strongly
correlated materials. In this approach the local exchange-correlation portion
of electron-electron interaction is excluded from self consistent LDA
calculations for strongly correlated electronic shells, e.g. d-states of
transition metal compounds. Then the corresponding double counting term in
LDA+DMFT Hamiltonian is consistently set in the local Hartree (fully localized
limit - FLL) form of the Hubbard model interaction term. We present the results
of extensive LDA'+DMFT calculations of densities of states, spectral densities
and optical conductivity for most typical representatives of two wide classes
of strongly correlated systems in paramagnetic phase: charge transfer
insulators (MnO, CoO and NiO) and strongly correlated metals (SrVO3 and
Sr2RuO4). It is shown that for NiO and CoO systems LDA'+DMFT qualitatively
improves the conventional LDA+DMFT results with FLL type of double counting,
where CoO and NiO were obtained to be metals. We also include in our
calculations transition metal 4s-states located near the Fermi level missed in
previous LDA+DMFT studies of these monooxides. General agreement with optical
and X-ray experiments is obtained. For strongly correlated metals
LDA+DMFT results agree well with earlier LDA+DMFT calculations and
existing experiments. However, in general LDA'+DMFT results give better
quantitative agreement with experimental data for band gap sizes and oxygen
states positions, as compared to the conventional LDA+DMFT.Comment: 13 pages, 11 figures, 1 table. In v2 there some additional
clarifications are include
Improved stability regions for ground states of the extended Hubbard model
The ground state phase diagram of the extended Hubbard model containing
nearest and next-to-nearest neighbor interactions is investigated in the
thermodynamic limit using an exact method. It is found that taking into account
local correlations and adding next-to-nearest neighbor interactions both have
significant effects on the position of the phase boundaries. Improved stability
domains for the -pairing state and for the fully saturated ferromagnetic
state at half filling have been constructed. The results show that these states
are the ground states for model Hamiltonians with realistic values of the
interaction parameters.Comment: 21 pages (10 figures are included) Revtex, revised version. To be
published in Phys. Rev. B. E-mail: [email protected]
Observation of periodic variable stars towards the galactic spiral arms by EROS II
We present the results of a massive variability search based on a photometric
survey of a six square degree region along the Galactic plane at (, ) and (, ). This
survey was performed in the framework of the EROS II (Exp\'erience de Recherche
d'Objets Sombres) microlensing program. The variable stars were found among
1,913,576 stars that were monitored between April and June 1998 in two
passbands, with an average of 60 measurements. A new period-search technique is
proposed which makes use of a statistical variable that characterizes the
overall regularity of the flux versus phase diagram. This method is well suited
when the photometric data are unevenly distributed in time, as is our case.
1,362 objects whose luminosity varies were selected. Among them we identified 9
Cepheids, 19 RR Lyrae, 34 Miras, 176 eclipsing binaries and 266 Semi-Regular
stars. Most of them are newly identified objects. The cross-identification with
known catalogues has been performed. The mean distance of the RR Lyrae is
estimated to be kpc undergoing an average absorption of
magnitudes. This distance is in good agreement with the one
of disc stars which contribute to the microlensing source star population.Our
catalogue and light curves are available electronically from the CDS,
Strasbourg and from our Web site http://eros.in2p3.fr.Comment: 15 pages, 11 figures, accepted in A&A (april 2002
Metal-insulator transition in a doubly orbitally degenerate model with correlated hopping
In the present paper we propose a doubly orbitally degenerate narrow-band
model with correlated hopping. The peculiarity of the model is taking into
account the matrix element of electron-electron interaction which describes
intersite hoppings of electrons. In particular, this leads to the concentration
dependence of the effective hopping integral. The cases of the strong and weak
Hund's coupling are considered. By means of a generalized mean-field
approximation the single-particle Green function and quasiparticle energy
spectrum are calculated. Metal-insulator transition is studied in the model at
different integer values of the electron concentration. With the help of the
obtained energy spectrum we find energy gap width and criteria of
metal-insulator transition.Comment: minor revisions, published in Phys. Rev.
- …