276 research outputs found

    Dante's Inferno

    Full text link
    We present a simple two-field model of inflation and show how to embed it in string theory as a straightforward generalization of axion monodromy models. Phenomenologically, the predictions are equivalent to those of chaotic inflation, and in particular include observably large tensor modes. The whole high-scale large-field inflationary dynamics takes place within a region of field space that is parametrically subplanckian in diameter, hence improving our ability to control quantum corrections and achieve slow-roll inflation

    Infrared imaging of WENSS radio sources

    Get PDF
    We have performed deep imaging in the IR J- and K-bands for three sub-samples of radio sources extracted from the Westerbork Northern Sky Survey, a large low-frequency radio survey containing Ultra Steep Spectrum (USS), Gigahertz Peaked Spectrum (GPS) and Flat Spectrum (FS) sources. We present the results of these IR observations, carried out with the ARcetri Near Infrared CAmera (ARNICA) at the Nordic Optical Telescope (NOT), providing photometric and morphologic information on high redshift radio galaxies and quasars. We find that the radio galaxies contained in our sample do not show the pronounced radio/IR alignment claimed for 3CR sources. IR photometric measurements of the gravitational lens system 1600+434 are also presented.Comment: 8 pages, 54 Postscript figures, to be published in Astronomy and Astrophysics, Supplement Serie

    Radio jet interactions in the radio galaxy PKS 2152-699

    Full text link
    We present radio observations of the radio galaxy PKS 2152-699 obtained with the Australia Telescope Compact Array (ATCA). The much higher resolution and s/n of the new radio maps reveals the presence of a bright radio component about 10 arcsec NE of the nucleus. This lies close to the highly ionized cloud previously studied in the optical and here shown in a broadband red snapshot image with the HST PC2. It suggests that PKS 2152-699 may be a jet/cloud interaction similar to 3C277.3. This could cause the change in the position angle (of ~20 deg) of the radio emission from the inner to the outer regions. On the large scale, the source has Fanaroff & Riley type II morphology although the presence of the two hot-spots in the centres of the lobes is unusual. The northern lobe shows a particularly relaxed structure while the southern one has an edge-brightened, arc-like structure.Comment: 7 pages, 5 encapsulated figures, 1 JPEG figure, accepted for MNRA

    Observational and Experimental Gravity

    Full text link
    We indicate the progress of experimental gravity, present an outlook in this field, and summarise the Observational/Experimental Parallel Session together with a related plenary talk on gravitational waves of the 2nd LeCosPA Symposium.Comment: 1 figure, Second LeCosPa Simposium, December 2015, Taipei Taiwa

    Ricci flow for homogeneous compact models of the universe

    Full text link
    Using quaternions, we give a concise derivation of the Ricci tensor for homogeneous spaces with topology of the 3-dimensional sphere. We derive explicit and numerical solutions for the Ricci flow PDE and discuss their properties. In the collapse (or expansion) of these models, the interplay of the various components of the Ricci tensor are studied. We dedicate this paper to honor the work of Josh Goldberg.Comment: 18 pages, 2 figure

    Cosmological Birefringence: an Astrophysical test of Fundamental Physics

    Full text link
    We review the methods used to test for the existence of cosmological birefringence, i.e. a rotation of the plane of linear polarization for electromagnetic radiation traveling over cosmological distances, which might arise in a number of important contexts involving the violation of fundamental physical principles. The main methods use: (1) the radio polarization of radio galaxies and quasars, (2) the ultraviolet polarization of radio galaxies, and (3) the cosmic microwave background polarization. We discuss the main results obtained so far, the advantages and disadvantages of each method, and future prospects.Comment: To appear in the Proceedings of the JENAM 2010 Symposium "From Varying Couplings to Fundamental Physics", held in Lisbon, 6-10 Sept. 201

    GRB 000911: Evidence for an Associated Supernova?

    Get PDF
    We present photometric and spectroscopic observations of the late afterglow of GRB 000911. We detect a moderately significant re-brightening in the R, I and J lightcurves, associated with a sizable reddening of the spectrum. This can be explained through the presence of an underlying supernova, outshining the afterglow ~ 30 days after the burst event

    The heating mechanism for the warm/cool dust in powerful, radio-loud AGN

    Get PDF
    The uncertainty surrounding the nature of the heating mechanism for the dust that emits at mid- to far-IR (MFIR) wavelengths in active galaxies limits our understanding of the links between active galactic nuclei (AGN) and galaxy evolution, as well as our ability to interpret the prodigious infrared and sub-mm emission of some of the most distant galaxies in the Universe. Here we report deep Spitzer observations of a complete sample of powerful, intermediate redshift (0.05 < z < 0.7) radio galaxies and quasars. We show that AGN power, as traced by [OIII]5007 emission, is strongly correlated with both the mid-IR (24 micron) and the far-IR (70 micron) luminosities, however, with increased scatter in the 70 micron correlation. A major cause of this increased scatter is a group of objects that falls above the main correlation and displays evidence for prodigious recent star formation activity at optical wavelengths, along with relatively cool MFIR colours. These results provide evidence that illumination by the AGN is the primary heating mechanism for the dust emitting at both 24 and 70 microns, with starbursts dominating the heating of the cool dust in only 20 -- 30% of objects. This implies that powerful AGN are not always accompanied by the type of luminous starbursts that are characteristic of the peak of activity in major gas-rich mergers.Comment: 13 pages, 3 figures. Accepted for publication in astrophysical journal letter

    Polarized Narrow-Line Emission from the Nucleus of NGC 4258

    Get PDF
    The detection of polarized continuum and line emission from the nucleus of NGC 4258 by Wilkes et al. (1995) provides an intriguing application of the unified model of Seyfert nuclei to a galaxy in which there is known to be an edge-on, rotating disk of molecular gas surrounding the nucleus. Unlike most Seyfert nuclei, however, NGC 4258 has strongly polarized narrow emission lines. To further investigate the origin of the polarized emission, we have obtained spectropolarimetric observations of the NGC 4258 nucleus at the Keck-II telescope. The narrow-line polarizations range from 1.0% for [S II] 6716 to 13.9% for the [O II] 7319,7331 blend, and the position angle of polarization is oriented nearly parallel to the projected plane of the masing disk. A correlation between critical density and degree of polarization is detected for the forbidden lines, indicating that the polarized emission arises from relatively dense (n_e > 10^4 cm^-3) gas. An archival Hubble Space Telescope narrow-band [O III] image shows that the narrow-line region has a compact, nearly unresolved core, implying a FWHM size of <2.5 pc. We discuss the possibility that the polarized emission might arise from the accretion disk itself and become polarized by scattering within the disk atmosphere. A more likely scenario is an obscuring torus or strongly warped disk surrounding the inner portion of a narrow-line region which is strongly stratified in density. The compact size of the narrow-line region implies that the obscuring structure must be smaller than ~2.5 pc in diameter.Comment: To appear in the Astronomical Journal. 13 pages, including 1 table and 4 figures. Uses emulateapj.st
    corecore