1 research outputs found
Coupled-mode equations and gap solitons in a two-dimensional nonlinear elliptic problem with a separable periodic potential
We address a two-dimensional nonlinear elliptic problem with a
finite-amplitude periodic potential. For a class of separable symmetric
potentials, we study the bifurcation of the first band gap in the spectrum of
the linear Schr\"{o}dinger operator and the relevant coupled-mode equations to
describe this bifurcation. The coupled-mode equations are derived by the
rigorous analysis based on the Fourier--Bloch decomposition and the Implicit
Function Theorem in the space of bounded continuous functions vanishing at
infinity. Persistence of reversible localized solutions, called gap solitons,
beyond the coupled-mode equations is proved under a non-degeneracy assumption
on the kernel of the linearization operator. Various branches of reversible
localized solutions are classified numerically in the framework of the
coupled-mode equations and convergence of the approximation error is verified.
Error estimates on the time-dependent solutions of the Gross--Pitaevskii
equation and the coupled-mode equations are obtained for a finite-time
interval.Comment: 32 pages, 16 figure