9,349 research outputs found
Stably Extending Two-Dimensional Bipedal Walking to Three Dimensions
In this paper we develop a feedback control law that results in stable walking gaits on flat ground for a three-dimensional bipedal robotic walker given stable walking gaits for a two-dimensional bipedal robotic walker. This is achieved by combining disparate techniques that have been employed in the bipedal robotic community: controlled symmetries, geometric reduction and hybrid zero dynamics. Controlled symmetries are utilized to obtain stable walking gaits for a two-dimensional bipedal robot walking on flat ground. These are related to walking gaits for a three-dimensional (hipless) bipedal robot through the use of geometric reduction. Finally, these walking gaits in three dimensions are made stable through the use of hybrid zero dynamics
Orbit Characterization, Stabilization and Composition on 3D Underactuated Bipedal Walking via Hybrid Passive Linear Inverted Pendulum Model
A Hybrid passive Linear Inverted Pendulum (H-LIP) model is proposed for characterizing, stabilizing and composing periodic orbits for 3D underactuated bipedal walking. Specifically, Period-l (P1) and Period -2 (P2) orbits are geometrically characterized in the state space of the H-LIP. Stepping controllers are designed for global stabilization of the orbits. Valid ranges of the gains and their optimality are derived. The optimal stepping controller is used to create and stabilize the walking of bipedal robots. An actuated Spring-loaded Inverted Pendulum (aSLIP) model and the underactuated robot Cassie are used for illustration. Both the aSLIP walking with PI or P2 orbits and the Cassie walking with all 3D compositions of the PI and P2 orbits can be smoothly generated and stabilized from a stepping-in-place motion. This approach provides a perspective and a methodology towards continuous gait generation and stabilization for 3D underactuated walking robots
Input-to-State Safety With Control Barrier Functions
This letter presents a new notion of input-to-state safe control barrier
functions (ISSf-CBFs), which ensure safety of nonlinear dynamical systems under
input disturbances. Similar to how safety conditions are specified in terms of
forward invariance of a set, input-to-state safety (ISSf) conditions are
specified in terms of forward invariance of a slightly larger set. In this
context, invariance of the larger set implies that the states stay either
inside or very close to the smaller safe set; and this closeness is bounded by
the magnitude of the disturbances. The main contribution of the letter is the
methodology used for obtaining a valid ISSf-CBF, given a control barrier
function (CBF). The associated universal control law will also be provided.
Towards the end, we will study unified quadratic programs (QPs) that combine
control Lyapunov functions (CLFs) and ISSf-CBFs in order to obtain a single
control law that ensures both safety and stability in systems with input
disturbances.Comment: 7 pages, 7 figures; Final submitted versio
Hybrid Geometric Reduction of Hybrid Systems
This paper presents a unifying framework in
which to carry out the hybrid geometric reduction of hybrid
systems, generalizing classical reduction to a hybrid setting
Stability of Zeno Equilibria in Lagrangian Hybrid Systems
This paper presents both necessary and sufficient
conditions for the stability of Zeno equilibria in Lagrangian hybrid systems, i.e., hybrid systems modeling mechanical systems undergoing impacts. These conditions for stability are motivated by the sufficient conditions for Zeno behavior in Lagrangian hybrid systems obtained in [11]—we show that the same conditions that imply the existence of Zeno behavior near Zeno equilibria imply the stability of the Zeno equilibria. This paper, therefore, not only presents conditions for the stability of Zeno equilibria, but directly relates the stability of Zeno equilibria to the existence of Zeno behavior
A geometric approach to three-dimensional hipped bipedal robotic walking
This paper presents a control law that results in stable walking for a three-dimensional bipedal robot with a hip. To obtain this control law, we utilize techniques from geometric reduction, and specifically a variant of Routhian reduction termed functional Routhian reduction, to effectively decouple the dynamics of the three-dimensional biped into its sagittal and lateral components. Motivated by the decoupling afforded by functional Routhian reduction, the control law we present is obtained by combining three separate control laws: the first shapes the potential energy of the sagittal dynamics of the biped to obtain stable walking gaits when it is constrained to the sagittal plane, the second shapes the total energy of the walker so that functional Routhian reduction can be applied to decoupling the dynamics of the walker for certain initial conditions, and the third utilizes an output zeroing controller to stabilize to the surface defining these initial conditions. We numerically verify that this method results in stable walking, and we discuss certain attributes of this walking gait
Sufficient conditions for the existence of Zeno behavior in a class of nonlinear hybrid systems via constant approximations
The existence of Zeno behavior in hybrid systems
is related to a certain type of equilibria, termed Zeno equilibria,
that are invariant under the discrete, but not the continuous,
dynamics of a hybrid system. In analogy to the standard
procedure of linearizing a vector field at an equilibrium point to
determine its stability, in this paper we study the local behavior
of a hybrid system near a Zeno equilibrium point by considering
the value of the vector field on each domain at this point, i.e., we
consider constant approximations of nonlinear hybrid systems.
By means of these constant approximations, we are able to
derive conditions that simultaneously imply both the existence
of Zeno behavior and the local exponential stability of a Zeno
equilibrium point. Moreover, since these conditions are in terms
of the value of the vector field on each domain at a point, they
are remarkably easy to verify
Input to State Stability of Bipedal Walking Robots: Application to DURUS
Bipedal robots are a prime example of systems which exhibit highly nonlinear
dynamics, underactuation, and undergo complex dissipative impacts. This paper
discusses methods used to overcome a wide variety of uncertainties, with the
end result being stable bipedal walking. The principal contribution of this
paper is to establish sufficiency conditions for yielding input to state stable
(ISS) hybrid periodic orbits, i.e., stable walking gaits under model-based and
phase-based uncertainties. In particular, it will be shown formally that
exponential input to state stabilization (e-ISS) of the continuous dynamics,
and hybrid invariance conditions are enough to realize stable walking in the
23-DOF bipedal robot DURUS. This main result will be supported through
successful and sustained walking of the bipedal robot DURUS in a laboratory
environment.Comment: 16 pages, 10 figure
Multi-objective Compositions for Collision-Free Connectivity Maintenance in Teams of Mobile Robots
Compositional barrier functions are proposed in this paper to systematically
compose multiple objectives for teams of mobile robots. The objectives are
first encoded as barrier functions, and then composed using AND and OR logical
operators. The advantage of this approach is that compositional barrier
functions can provably guarantee the simultaneous satisfaction of all composed
objectives. The compositional barrier functions are applied to the example of
ensuring collision avoidance and static/dynamical graph connectivity of teams
of mobile robots. The resulting composite safety and connectivity barrier
certificates are verified experimentally on a team of four mobile robots.Comment: To appear in 55th IEEE Conference on Decision and Control, December
12-14, 2016, Las Vegas, NV, US
- …