14 research outputs found

    Formation of ultracold Rb 2 molecules in the v′′ = 0 level of the a 3Σ + u state via blue-detuned photoassociation to the 1 3Π g state

    Get PDF
    We report on the observation of blue-detuned photoassociation in Rb2, in which vibrational levels are energetically above the corresponding excited atomic asymptote. 85Rb atoms in a MOT were photoassociated at short internuclear distance to levels of the 13Πg state at a rate of approximately 5 × 104 molecules s−1. We have observed most of the predicted vibrational levels for all four spin–orbit components; 0+g, 0−g, 1g, and 2g, including levels of the 0+g outer well. These molecules decay to the metastable a3Σ+u state, some preferentially to the v′′ = 0 level, as we have observed for photoassociation to the v′ = 8 level of the 1g component

    Using Molecules to Measure Nuclear Spin-Dependent Parity Violation

    Full text link
    Nuclear spin-dependent parity violation arises from weak interactions between electrons and nucleons, and from nuclear anapole moments. We outline a method to measure such effects, using a Stark-interference technique to determine the mixing between opposite-parity rotational/hyperfine levels of ground-state molecules. The technique is applicable to nuclei over a wide range of atomic number, in diatomic species that are theoretically tractable for interpretation. This should provide data on anapole moments of many nuclei, and on previously unmeasured neutral weak couplings
    corecore