1,379 research outputs found

    Quantal Two-Centre Coulomb Problem treated by means of the Phase-Integral Method II. Quantization Conditions in the Symmetric Case Expressed in Terms of Complete Elliptic Integrals. Numerical Illustration

    Get PDF
    The contour integrals, occurring in the arbitrary-order phase-integral quantization conditions given in a previous paper, are in the first- and third-order approximations expressed in terms of complete elliptic integrals in the case that the charges of the Coulomb centres are equal. The evaluation of the integrals is facilitated by the knowledge of quasiclassical dynamics. The resulting quantization conditions involving complete elliptic integrals are solved numerically to obtain the energy eigenvalues and the separation constants of the 1sσ1s\sigma and 2pσ2p\sigma states of the hydrogen molecule ion for various values of the internuclear distance. The accuracy of the formulas obtained is illustrated by comparison with available numerically exact results.Comment: 19 pages, RevTeX 4, 4 EPS figures, submitted to J. Math. Phy

    Excitation of the electric pygmy dipole resonance by inelastic electron scattering

    Full text link
    To complete earlier studies of the properties of the electric pygmy dipole resonance (PDR) obtained in various nuclear reactions, the excitation of the 1^- states in 140^{140}Ce by (e,e)(e,e') scattering for momentum transfers q=0.11.2q=0.1-1.2~fm1^{-1} is calculated within the plane-wave and distorted-wave Born approximations. The excited states of the nucleus are described within the Quasiparticle Random Phase Approximation (QRPA), but also within the Quasiparticle-Phonon Model (QPM) by accounting for the coupling to complex configurations. It is demonstrated that the excitation mechanism of the PDR states in (e,e)(e,e') reactions is predominantly of transversal nature for scattering angles θe90o180o\theta_e \approx 90^o-180^o. Being thus mediated by the convection and spin nuclear currents, the (e,e)(e,e') like the (γ,γ)(\gamma,\gamma') reaction, may provide additional information to the one obtained from Coulomb- and hadronic excitations of the PDR in (p,p)(p,p'), (α,α)(\alpha,\alpha'), and heavy-ion scattering reactions. The calculations predict that the (e,e)(e,e') cross sections for the strongest individual PDR states are in general about three orders of magnitude smaller as compared to the one of the lowest 21+2^+_1 state for the studied kinematics, but that they may become dominant at extreme backward angles.Comment: Prepared for the special issue of EPJA on the topic "Giant, Pygmy, Pairing Resonances and related topics" dedicated to the memory of Pier Francesco Bortigno

    Self-consistent approach for the quantum confined Stark effect in shallow quantum wells

    Full text link
    A computationally efficient, self-consistent complex scaling approach to calculating characteristics of excitons in an external electric field in quantum wells is introduced. The method allows one to extract the resonance position as well as the field-induced broadening for the exciton resonance. For the case of strong confinement the trial function is represented in factorized form. The corresponding coupled self-consistent equations, which include the effective complex potentials, are obtained. The method is applied to the shallow quantum well. It is shown that in this case the real part of the effective exciton potential is insensitive to changes of external electric field up to the ionization threshold, while the imaginary part has non-analytical field dependence and small for moderate electric fields. This allows one to express the exciton quasi-energy at some field through the renormalized expression for the zero-field bound state.Comment: 13 pages, RevTeX4, 6 figure

    Anharmonic properties of double giant dipole resonance

    Get PDF
    A systematic microscopic study of the anharmonic properties of the double giant dipole resonance (DGDR) has been carried out, for the first time, for nuclei with mass number AA spanning the whole mass table. It is concluded that the corrections of the energy centroid of the Jπ=0+J^{\pi} = 0^+ and 2+2^+ components of the DGDR from its harmonic limit are negative, have a value of the order of few hundred keV and follow an A1A^{-1} dependence.Comment: 4 pages, 2 figure
    corecore