841 research outputs found

    Cylindrical Solutions in Modified f(T) Gravity

    Full text link
    We investigate static cylindrically symmetric vacuum solutions in Weyl coordinates in the framework of f(T) theories of gravity, where T is the torsion scalar. The set of modified Einstein equations is presented and the fourth coming equations are established. Specific physical expressions are assumed for the algebraic function f(T) and solutions are obtained. Moreover, general solution is obtained with finite values of u(r) on the axis r = 0, and this leads to a constant torsion scalar. Also, cosmological constant is introduced and its relation to Linet-Tian solution in GR is commented.Comment: 13 pages; Accepted for publication in International Journal of Modern Physics D (IJMPD

    Time varying gravitational constant G via the entropic force

    Full text link
    If the uncertainty principle applies to the Verlinde entropic idea, it leads to a new term in the Newton's second law of mechanics in the Planck's scale. This curious velocity dependence term inspires a frictional feature of the gravity. In this short letter we address that this new term modifies the effective mass and the Newtonian constant as the time dependence quantities. Thus we must have a running on the value of the effective mass on the particle mass mm near the holographic screen and the GG. This result has a nigh relation with the Dirac hypothesis about the large numbers hypothesis (L.N.H.) [1]. We propose that the corrected entropic terms via Verlinde idea can be brought as a holographic evidence for the authenticity of the Dirac idea.Comment: Accepted for publication in "Communications in Theoretical Physics (CTP)",Major revisio

    Entropic corrections to Newton's law

    Full text link
    In this short letter we calculate separately the generalized uncertainty principle (GUP) and self gravitational corrections to the Newton's gravitational formula. We show that for a complete description of the GUP and self-gravity effects, both temperature and the entropy must be modified.Comment: 4 pages, Accepted for publication in "Physica Scripta",Title changed, Major revisio

    Simulating Supersonic Turbulence in Magnetized Molecular Clouds

    Full text link
    We present results of large-scale three-dimensional simulations of weakly magnetized supersonic turbulence at grid resolutions up to 1024^3 cells. Our numerical experiments are carried out with the Piecewise Parabolic Method on a Local Stencil and assume an isothermal equation of state. The turbulence is driven by a large-scale isotropic solenoidal force in a periodic computational domain and fully develops in a few flow crossing times. We then evolve the flow for a number of flow crossing times and analyze various statistical properties of the saturated turbulent state. We show that the energy transfer rate in the inertial range of scales is surprisingly close to a constant, indicating that Kolmogorov's phenomenology for incompressible turbulence can be extended to magnetized supersonic flows. We also discuss numerical dissipation effects and convergence of different turbulence diagnostics as grid resolution refines from 256^3 to 1024^3 cells.Comment: 10 pages, 3 figures, to appear in the proceedings of the DOE/SciDAC 2009 conferenc

    Phase transition in Schwarzschild-de Sitter spacetime

    Full text link
    Using a static massive spherically symmetric scalar field coupled to gravity in the Schwarzschild-de Sitter (SdS) background, first we consider some asymptotic solutions near horizon and their local equations of state(E.O.S) on them. We show that near cosmological and event horizons our scalar field behaves as a dust. At the next step near two pure de-Sitter or Schwarzschild horizons we obtain a coupling dependent pressure to energy density ratio. In the case of a minimally couplling this ratio is -1 which springs to the mind thermodynamical behavior of dark energy. If having a negative pressure behavior near these horizons we concluded that the coupling constant must be ξ<1/4\xi<{1/4} >. Therefore we derive a new constraint on the value of our coupling ξ\xi . These two different behaviors of unique matter in the distinct regions of spacetime at present era can be interpreted as a phase transition from dark matter to dark energy in the cosmic scales and construct a unified scenario.Comment: 7 pages,no figures,RevTex, Typos corrected and references adde

    Probability distributions of turbulent energy

    Full text link
    Probability density functions (PDFs) of scale-dependent energy fluctuations, P[δE()]P[\delta E(\ell)], are studied in high-resolution direct numerical simulations of Navier-Stokes and incompressible magnetohydrodynamic (MHD) turbulence. MHD flows with and without a strong mean magnetic field are considered. For all three systems it is found that the PDFs of inertial range energy fluctuations exhibit self-similarity and monoscaling in agreement with recent solar-wind measurements [B. Hnat et al., Geophys. Res. Lett. 29(10), 86-1 (2002)]. Furthermore, the energy PDFs exhibit similarity over all scales of the turbulent system showing no substantial qualitative change of shape as the scale of the fluctuations varies. This is in contrast to the well-known behavior of PDFs of turbulent velocity fluctuations. In all three cases under consideration the P[δE()]P[\delta E(\ell)] resemble L\'evy-type gamma distributions Δ1exp(δE/Δ)δEγ\sim \Delta^{-1}\exp(-|\delta E|/\Delta)|\delta E|^{-\gamma} The observed gamma distributions exhibit a scale-dependent width Δ()\Delta(\ell) and a system-dependent γ\gamma. The monoscaling property reflects the inertial-range scaling of the Els\"asser-field fluctuations due to lacking Galilei invariance of δE\delta E. The appearance of L\'evy distributions is made plausible by a simple model of energy transfer.Comment: accepted for publication in PR

    p-Wave holographic superconductors with Weyl corrections

    Full text link
    We study the (3+1) dimensional p-wave holographic superconductors with Weyl corrections both numerically and analytically. We describe numerically the behavior of critical temperature TcT_{c} with respect to charge density ρ\rho in a limited range of Weyl coupling parameter γ\gamma and we find in general the condensation becomes harder with the increase of parameter γ\gamma. In strong coupling limit of Yang-Mills theory, we show that the minimum value of TcT_{c} obtained from analytical approach is in good agreement with the numerical results, and finally show how we got remarkably a similar result in the critical exponent 1/2 of the chemical potential μ\mu and the order parameter with the numerical curves of superconductors.Comment: 7 pages, 1 figure, 1 table. One refrence added, presentations improve

    Gauss-Bonnet holographic superconductors with magnetic field

    Full text link
    We study the Gauss-Bonnet (GB) holographic superconductors in the presence of an external magnetic field. We describe the phenomena away from the probe limit. We derive the critical magnetic field of the GB holographic superconductors with backreaction. Our analytical approach matches the numerical calculations. We calculate the backreaction corrections up to first order of O(κ2=8πG)O(\kappa^2=8\pi G) to the critical temperature TCT_C and the critical magnetic field BCB_C for a GB superconductor. We show that the GB coupling α\alpha makes the condensation weaker but the backreaction corrections O(κ2)O(\kappa^2) make the critical magnetic field stronger.Comment: 9 pages, 4 figures. Accepted for publication by EP
    corecore