942 research outputs found

    Machine-Related Backgrounds in the SiD Detector at ILC

    Full text link
    With a multi-stage collimation system and magnetic iron spoilers in the tunnel, the background particle fluxes on the ILC detector can be substantially reduced. At the same time, beam-halo interactions with collimators and protective masks in the beam delivery system create fluxes of muons and other secondary particles which can still exceed the tolerable levels for some of the ILC sub-detectors. Results of modeling of such backgrounds in comparison to those from the e+ e- interactions are presented in this paper for the SiD detector.Comment: 29 pages, 34 figures, 7 table

    Hydrodynamic chains and a classification of their Poisson brackets

    Full text link
    Necessary and sufficient conditions for an existence of the Poisson brackets significantly simplify in the Liouville coordinates. The corresponding equations can be integrated. Thus, a description of local Hamiltonian structures is a first step in a description of integrable hydrodynamic chains. The concept of MM Poisson bracket is introduced. Several new Poisson brackets are presented

    Optimization of the Target Subsystem for the New g-2 Experiment

    Full text link
    A precision measurement of the muon anomalous magnetic moment, aμ=(g−2)/2a_{\mu} = (g-2)/2, was previously performed at BNL with a result of 2.2 - 2.7 standard deviations above the Standard Model (SM) theoretical calculations. The same experimental apparatus is being planned to run in the new Muon Campus at Fermilab, where the muon beam is expected to have less pion contamination and the extended dataset may provide a possible 7.5σ7.5\sigma deviation from the SM, creating a sensitive and complementary bench mark for proposed SM extensions. We report here on a preliminary study of the target subsystem where the apparatus is optimized for pions that have favorable phase space to create polarized daughter muons around the magic momentum of 3.094 GeV/c, which is needed by the downstream g 2 muon ring.Comment: 4 pp. 3rd International Particle Accelerator Conference (IPAC 2012) 20-25 May 2012, New Orleans, Louisian

    All-optical dc nanotesla magnetometry using silicon vacancy fine structure in isotopically purified silicon carbide

    Full text link
    We uncover the fine structure of a silicon vacancy in isotopically purified silicon carbide (4H-28^{28}SiC) and find extra terms in the spin Hamiltonian, originated from the trigonal pyramidal symmetry of this spin-3/2 color center. These terms give rise to additional spin transitions, which are otherwise forbidden, and lead to a level anticrossing in an external magnetic field. We observe a sharp variation of the photoluminescence intensity in the vicinity of this level anticrossing, which can be used for a purely all-optical sensing of the magnetic field. We achieve dc magnetic field sensitivity of 87 nT Hz−1/2^{-1/2} within a volume of 3×10−73 \times 10^{-7} mm3^{3} at room temperature and demonstrate that this contactless method is robust at high temperatures up to at least 500 K. As our approach does not require application of radiofrequency fields, it is scalable to much larger volumes. For an optimized light-trapping waveguide of 3 mm3^{3} the projection noise limit is below 100 fT Hz−1/2^{-1/2}.Comment: 12 pages, 6 figures; additional experimental data and an extended theoretical analysis are added in the second versio

    Room-temperature near-infrared silicon carbide nanocrystalline emitters based on optically aligned spin defects

    Full text link
    Bulk silicon carbide (SiC) is a very promising material system for bio-applications and quantum sensing. However, its optical activity lies beyond the near infrared spectral window for in-vivo imaging and fiber communications due to a large forbidden energy gap. Here, we report the fabrication of SiC nanocrystals and isolation of different nanocrystal fractions ranged from 600 nm down to 60 nm in size. The structural analysis reveals further fragmentation of the smallest nanocrystals into ca. 10-nm-size clusters of high crystalline quality, separated by amorphization areas. We use neutron irradiation to create silicon vacancies, demonstrating near infrared photoluminescence. Finally, we detect, for the first time, room-temperature spin resonances of these silicon vacancies hosted in SiC nanocrystals. This opens intriguing perspectives to use them not only as in-vivo luminescent markers, but also as magnetic field and temperature sensors, allowing for monitoring various physical, chemical and biological processes.Comment: 5 pages, 4 figure
    • …
    corecore