37 research outputs found

    From Single to Multiple-Photon Decoherence in an Atom Interferometer

    Get PDF
    We measure the decoherence of a spatially separated atomic superposition due to spontaneous photon scattering. We observe a qualitative change in decoherence versus separation as the number of scattered photons increases, and verify quantitatively the decoherence rate constant in the many-photon limit. Our results illustrate an evolution of decoherence consistent with general models developed for a broad class of decoherence phenomenon

    Glory Oscillations in the Index of Refraction for Matter-Waves

    Get PDF
    We have measured the index of refraction for sodium de Broglie waves in gases of Ar, Kr, Xe, and nitrogen over a wide range of sodium velocities. We observe glory oscillations -- a velocity-dependent oscillation in the forward scattering amplitude. An atom interferometer was used to observe glory oscillations in the phase shift caused by the collision, which are larger than glory oscillations observed in the cross section. The glory oscillations depend sensitively on the shape of the interatomic potential, allowing us to discriminate among various predictions for these potentials, none of which completely agrees with our measurements

    Planck's scale dissipative effects in atom interferometry

    Get PDF
    Atom interferometers can be used to study phenomena leading to irreversibility and dissipation, induced by the dynamics of fundamental objects (strings and branes) at a large mass scale. Using an effective, but physically consistent description in terms of a master equation of Lindblad form, the modifications of the interferometric pattern induced by the new phenomena are analyzed in detail. We find that present experimental devices can in principle provide stringent bounds on the new effects.Comment: 12 pages, plain-Te

    Decoherence, einselection, and the quantum origins of the classical

    Full text link
    Decoherence is caused by the interaction with the environment. Environment monitors certain observables of the system, destroying interference between the pointer states corresponding to their eigenvalues. This leads to environment-induced superselection or einselection, a quantum process associated with selective loss of information. Einselected pointer states are stable. They can retain correlations with the rest of the Universe in spite of the environment. Einselection enforces classicality by imposing an effective ban on the vast majority of the Hilbert space, eliminating especially the flagrantly non-local "Schr\"odinger cat" states. Classical structure of phase space emerges from the quantum Hilbert space in the appropriate macroscopic limit: Combination of einselection with dynamics leads to the idealizations of a point and of a classical trajectory. In measurements, einselection replaces quantum entanglement between the apparatus and the measured system with the classical correlation.Comment: Final version of the review, with brutally compressed figures. Apart from the changes introduced in the editorial process the text is identical with that in the Rev. Mod. Phys. July issue. Also available from http://www.vjquantuminfo.or

    Phase-space formulation of quantum mechanics and quantum state reconstruction for physical systems with Lie-group symmetries

    Get PDF
    We present a detailed discussion of a general theory of phase-space distributions, introduced recently by the authors [J. Phys. A {\bf 31}, L9 (1998)]. This theory provides a unified phase-space formulation of quantum mechanics for physical systems possessing Lie-group symmetries. The concept of generalized coherent states and the method of harmonic analysis are used to construct explicitly a family of phase-space functions which are postulated to satisfy the Stratonovich-Weyl correspondence with a generalized traciality condition. The symbol calculus for the phase-space functions is given by means of the generalized twisted product. The phase-space formalism is used to study the problem of the reconstruction of quantum states. In particular, we consider the reconstruction method based on measurements of displaced projectors, which comprises a number of recently proposed quantum-optical schemes and is also related to the standard methods of signal processing. A general group-theoretic description of this method is developed using the technique of harmonic expansions on the phase space.Comment: REVTeX, 18 pages, no figure

    Management of cryptorchidism: a survey of clinical practice in Italy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An evidence-based Consensus on the treatment of undescended testis (UT) was recently published, recommending to perform orchidopexy between 6 and 12 months of age, or upon diagnosis and to avoid the use of hormones. In Italy, current practices on UT management are little known. Our aim was to describe the current management of UT in a cohort of Italian children in comparison with the Consensus guidelines. As management of retractile testis (RT) differs, RT cases were described separately.</p> <p>Methods</p> <p>Ours is a retrospective, multicenter descriptive study. An online questionnaire was filled in by 140 Italian Family Paediatricians (FP) from <it>Associazione Culturale Pediatri </it>(ACP), a national professional association of FP. The questionnaire requested information on all children with cryptorchidism born between 1/01/2004 and 1/01/2006. Data on 169 children were obtained. Analyses were descriptive.</p> <p>Results</p> <p>Overall 24% of children were diagnosed with RT, 76% with UT. Among the latter, cryptorchidism resolved spontaneously in 10% of cases at a mean age of 21.6 months. Overall 70% of UT cases underwent orchidopexy at a mean age of 22.8 months (SD 10.8, range 1.2-56.4), 13% of whom before 1 year. The intervention was performed by a paediatric surgeon in 90% of cases, with a success rate of 91%. Orchidopexy was the first line treatment in 82% of cases, while preceded by hormonal treatment in the remaining 18%. Hormonal treatment was used as first line therapy in 23% of UT cases with a reported success rate of 25%. Overall, 13 children did not undergo any intervention (mean age at last follow up 39.6 months). We analyzed the data from the 5 Italian Regions with the largest number of children enrolled and found a statistically significant regional difference in the use of hormonal therapy, and in the use of and age at orchidopexy.</p> <p>Conclusions</p> <p>Our study showed an important delay in orchidopexy. A quarter of children with cryptorchidism was treated with hormonal therapy. In line with the Consensus guidelines, surgery was carried out by a paediatric surgeon in the majority of cases, with a high success rate.</p

    Basic Atomic Physics

    Get PDF
    Contains reports on five research projects.Joint Services Electronics Program Grant DAAH04-95-1-0038National Science Foundation Grant PHY 92-21489U.S. Navy - Office of Naval Research Grant N00014-90-J-1322National Science Foundation Grant PHY95-14795Charles S. Draper Laboratory Contract DL-H-484775U.S. Army Research Office Contract DAAH04-94-G-0170U.S. Army Research Office Contract DAAH04-95-1-0533U.S. Navy - Office of Naval Research Contract N00014-89-J-1207U.S. Navy - Office of Naval Research Contract N000014-96-1-0432David and Lucile Packard Foundation Grant 96-5158National Science Foundation Grant PHY95-01984U.S. Army - Office of ResearchU.S. Navy - Office of Naval Research Contract N00014-96-1-0485U.S. Navy - Office of Naval Research AASERT N00014-94-1-080

    Basic Atomic Physics

    Get PDF
    Contains reports on five research projects.Joint Services Electronics Program Grant DAAH04-95-1-0038National Science Foundation Grant PHY 92-21489U.S. Navy - Office of Naval Research Grant N00014-90-J-1322National Science Foundation Grant PHY 92-22768Charles S. Draper Laboratory Contract DL-H-4847759U.S. Army - Office of Scientific Research Grant DAAL03-92-G-0229U.S. Army - Office of Scientific Research Grant DAAL01-92-6-0197U.S. Navy - Office of Naval Research Grant N00014-89-J-1207Alfred P. Sloan FoundationNational Science Foundation Grant PHY 95-01984U.S. Army Research Office Contract DAAL01-92-C-0001U.S. Navy - Office of Naval Research Grant N00014-90-J-1642U.S. Navy - Office of Naval Research Grant N00014-94-1-080
    corecore