26 research outputs found
Quantifying the Density of mmWave NR Deployments for Provisioning Multi-Layer VR Services
The 5G New Radio (NR) technology operating in millimeter wave (mmWave) frequency band is designed for support bandwidth-greedy applications requiring extraordinary rates at the access interface. However, the use of directional antenna radiation patterns, as well as extremely large path losses and blockage phenomenon, requires efficient algorithms to support these services. In this study, we consider the multi-layer virtual reality (VR) service that utilizes multicast capabilities for baseline layer and unicast transmissions for delivering an enhanced experience. By utilizing the tools of stochastic geometry and queuing theory we develop a simple algorithm allowing to estimate the deployment density of mmWave NR base stations (BS) supporting prescribed delivery guarantees. Our numerical results show that the highest gains of utilizing multicast service for distributing base layer is observed for high UE densities. Despite of its simplicity, the proposed multicast group formation scheme operates close to the state-of-the-art algorithms utilizing the widest beams with longest coverage distance in approximately 50-70% of cases when UE density is lambda >= 0.3. Among other parameters, QoS profile and UE density have a profound impact on the required density of NR BSs while the effect of blockers density is non-linear having the greatest impact on strict QoS profiles. Depending on the system and service parameters the required density of NR BSs may vary in the range of 20-250 BS/km(2)
Design and analysis of in-pipe hydro-turbine for an optimized nearly zero energy building
Pakistan receives Direct Normal Irradiation (DNI) exceeding 2000 kWh/m2 /annum on approximately 83% of its land, which is very suitable for photovoltaic production. This energy can be easily utilized in conjunction with other renewable energy resources to meet the energy demands and reduce the carbon footprint of the country. In this research, a hybrid renewable energy solution based on a nearly Zero Energy Building (nZEB) model is proposed for a university facility. The building in consideration has a continuous flow of water through its water delivery vertical pipelinesA horizontal-axis spherical helical turbine is designed in SolidWorks and is analyzed through a computational fluid dynamics (CFD) analysis in ANSYS Fluent 18.1 based on the K-epsilon turbulent model. Results obtained from ANSYS Fluent have shown that a 24 feet vertical channel with a water flow of 0.2309 m3 /s and velocity of 12.66 m/s can run the designed hydroelectric turbine, delivering 168 W of mechanical power at 250 r.p.m. Based on the turbine, a hybrid renewable energy system (HRES) comprising photovoltaic and hydroelectric power is modelled and analyzed in HOMER Pro software. Among different architectures, it was found that architecture with hydroelectric and photovoltaic energy provided the best COE of $0.09418. © 2021 by the authors. Licensee MDPI, Basel, Switzerland
Clinical observation: giant uterine myoma. The tactic of surgical treatment and postoperative management
The article deals with the clinical case of a patient with giant uterine myoma. It presents the features of surgical intervention and postoperative management of the patient. In the publication, the authors discuss the issues concerning the scope of the surgery in patients with large and giant uterine myomas and prognosis of reproductive outcomes in this cohort of women
The Levels of Ghrelin, Glucagon, Visfatin and Glp-1 Are Decreased in the Peritoneal Fluid of Women with Endometriosis along with the Increased Expression of the CD10 Protease by the Macrophages
The aim of this study was to evaluate the levels of ten energy metabolism factors: C-peptide, ghrelin, GIP, GLP-1, glucagon, insulin, leptin, PAI-1 (total), resistin, and visfatin, and to determine the expression of GLP1R receptors, CD10, CD26 proteases, and pro-inflammatory marker CD86 by macrophages in the peritoneal fluid (PF) in patients with endometriosis. The study included 54 women with endometriosis and a control group of 30 women with uterine myoma without signs of endometriosis. The levels of factors in PF were assessed by a multiplex method. Expression of GLP1R receptors, CD10, CD26 proteases, and CD86 by macrophages was evaluated using flow cytometry. It was found that in women with endometriosis, the concentrations of ghrelin, GLP-1, glucagon, and visfatin in PF were reduced (p = 0.007, p = 0.009, p = 0.002, p = 0.008, respectively). At the same time, there was a noted increase in the CD10 protease expression by peritoneal macrophages (p = 0.044). Correlation analysis showed a positive correlation of ghrelin and GLP-1 levels with CD86 macrophage expression (p = 0.044, p = 0.022, respectively) in the study group; a positive correlation was also found between the levels of GLP-1, glucagon, and visfatin with CD26 macrophage expression (p = 0.041, p = 0.048, p = 0.015, respectively) in PF. No correlations were found in the control group. These results indicate that a decrease in the levels of ghrelin, GLP-1, glucagon, and visfatin in PF may contribute to endometriosis development through their impact on the expression of pro-inflammatory markers of PF macrophages