138 research outputs found

    Information technology in economy

    Get PDF

    Spatial distribution of Cherenkov radiation in periodic dielectric media

    Full text link
    The nontrivial dispersion relation of a periodic medium affects both the spectral and the spatial distribution of Cherenkov radiation. We present a theory of the spatial distribution of Cherenkov radiation in the far-field zone inside arbitrary three- and two-dimensional dielectric media. Simple analytical expressions for the far-field are obtained in terms of the Bloch mode expansion. Numerical examples of the Cherenkov radiation in a two-dimensional photonic crystal is presented. The developed analytical theory demonstrates good agreement with numerically rigorous finite-difference time-domain calculations.Comment: 14 pages, 5 figures, Journal of Optics A (in press

    Theoretical analysis of electromagnetic field electric tension distribution in the seeds of cereals

    Get PDF
    In this paper, based on the developed model of seeds, theoretical research are performed concerning the distribution of the electric intensity within low-energy (information) electromagnetic field of millimeter range wave lengths (frequency, power flow density, exposure, amplitude modulation), which may affect the biophysical processes in seed

    Mapping local optical densities of states in silicon photonic structures with nanoscale electron spectroscopy

    Full text link
    Relativistic electrons in a structured medium generate radiative losses such as Cherenkov and transition radiation that act as a virtual light source, coupling to the photonic densities of states. The effect is most pronounced when the imaginary part of the dielectric function is zero, a regime where in a non-retarded treatment no loss or coupling can occur. Maps of the resultant energy losses as a sub-5nm electron probe scans across finite waveguide structures reveal spatial distributions of optical modes in a spectral domain ranging from near-infrared to far ultraviolet.Comment: 18 pages, 4 figure

    Prototype 9.7 m Schwarzschild-Couder telescope for the Cherenkov Telescope Array: status of the optical system

    Full text link
    The Cherenkov Telescope Array (CTA) is an international project for a next-generation ground-based gamma ray observatory, aiming to improve on the sensitivity of current-generation experiments by an order of magnitude and provide energy coverage from 30 GeV to more than 300 TeV. The 9.7m Schwarzschild-Couder (SC) candidate medium-size telescope for CTA exploits a novel aplanatic two-mirror optical design that provides a large field of view of 8 degrees and substantially improves the off-axis performance giving better angular resolution across all of the field of view with respect to single-mirror telescopes. The realization of the SC optical design implies the challenging production of large aspherical mirrors accompanied by a submillimeter-precision custom alignment system. In this contribution we report on the status of the implementation of the optical system on a prototype 9.7 m SC telescope located at the Fred Lawrence Whipple Observatory in southern Arizona.Comment: Proceedings of the 35th International Cosmic Ray Conference (ICRC 2017), Busan, Korea. All CTA contributions at arXiv:1709.0348

    Decision algorithm of near-field microwave sounding

    Get PDF
    Some aspects of the new approach to the study of bidimensional reverse problems of the resonant near-field microwave sounding are discussed in this work. This approach is based on integral epresentations of the diffraction field using the "equivalent sources" and method of Lavrentiev regularizatio

    Onset of Wave Drag due to Generation of Capillary-Gravity Waves by a Moving Object as a Critical Phenomenon

    Full text link
    The onset of the {\em wave resistance}, via generation of capillary gravity waves, of a small object moving with velocity VV, is investigated experimentally. Due to the existence of a minimum phase velocity VcV_c for surface waves, the problem is similar to the generation of rotons in superfluid helium near their minimum. In both cases waves or rotons are produced at V>VcV>V_c due to {\em Cherenkov radiation}. We find that the transition to the wave drag state is continuous: in the vicinity of the bifurcation the wave resistance force is proportional to VVc\sqrt{V-V_c} for various fluids.Comment: 4 pages, 7 figure
    corecore