1,187 research outputs found

    Spin-orbit field switching of magnetization in ferromagnetic films with perpendicular anisotropy

    Full text link
    As an alternative to conventional magnetic field, the effective spin-orbit field in transition metals, derived from the Rashba field experienced by itinerant electrons confined in a spatial inversion asymmetric plane through the s-d exchange interaction, is proposed for the manipulation of magnetization. Magnetization switching in ferromagnetic thin films with perpendicular magnetocrystalline anisotropy can be achieved by current induced spin-orbit field, with small in-plane applied magnetic field. Spin-orbit field induced by current pulses as short as 10 ps can initiate ultrafast magnetization switching effectively, with experimentally achievable current densities. The whole switching process completes in about 100 ps.Comment: 4 pages, 3 figure

    Spin-Orbit Coupling and Tunneling Current in a Parabolic Quantum Dot

    Full text link
    We propose a novel approach to explore the properties of a quantum dot in the presence of the spin-orbit interaction and in a tilted magnetic field. The spin-orbit coupling within the quantum dot manifest itself as anti-crossing of the energy levels when the tilt angle is varied. The anti-crossing gap has a non-monotonic dependence on the magnitude of the magnetic field and exhibits a peak at some finite values of the magnetic field. From the dependence of the tunneling current through the quantum dot on the bias voltage and the tilt angle, the anti-crossing gap and most importantly the spin-orbit strength can be uniquely determined

    Massive Spin Collective Mode in Quantum Hall Ferromagnet

    Full text link
    It is shown that the collective spin rotation of a single Skyrmion in quantum Hall ferromagnet can be regarded as precession of the entire spin texture in the external magnetic field, with an effective moment of inertia which becomes infinite in the zero g-factor limit. This low-lying spin excitation may dramatically enhance the nuclear spin relaxation rate via the hyperfine interaction in the quantum well slightly away from filling factor equal one.Comment: 4 page

    Turbulence in Binary Bose-Einstein Condensates Generated by Highly Non-Linear Rayleigh-Taylor and Kelvin-Helmholtz Instabilities

    Get PDF
    Quantum turbulence (QT) generated by the Rayleigh-Taylor instability in binary immiscible ultracold 87Rb atoms at zero temperature is studied theoretically. We show that the quantum vortex tangle is qualitatively different from previously considered superfluids, which reveals deep relations between QT and classical turbulence. The present QT may be generated at arbitrarily small Mach numbers, which is a unique property not found in previously studied superfluids. By numerical solution of the coupled Gross-Pitaevskii equations we find that the Kolmogorov scaling law holds for the incompressible kinetic energy. We demonstrate that the phenomenon may be observed in the laboratory.Comment: Revised version. 7 pages, 8 figure

    Observation of exchange Coulomb interactions in the quantum Hall state at nu=3

    Full text link
    Coulomb exchange interactions of electrons in the nu=3 quantum Hall state are determined from two inter-Landau level spin-flip excitations measured by resonant inelastic light scattering. The two coupled collective excitations are linked to inter-Landau level spin-flip transitions arising from the N=0 and N=1 Landau levels. The strong repulsion between the two spin-flip modes in the long-wave limit is clearly manifested in spectra displaying Coulomb exchange contributions that are comparable to the exchange energy for the quantum Hall state at nu=1. Theoretical calculations within the Hartree-Fock approximation are in a good agreement with measured energies of spin-flip collective excitations.Comment: 5 pages, 3 figures, to appear in PRB Rapid Communication

    Fast Incomplete Decoherence of Nuclear Spins in Quantum Hall Ferromagnet

    Full text link
    A scenario of quantum computing process based on the manipulation of a large number of nuclear spins in Quantum Hall (QH) ferromagnet is presented. It is found that vacuum quantum fluctuations in the QH ferromagnetic ground state at filling factor ν=1\nu =1, associated with the virtual excitations of spin waves, lead to fast incomplete decoherence of the nuclear spins. A fundamental upper bound on the length of the computer memory is set by this fluctuation effect

    Integer Spin Hall Effect in Ballistic Quantum Wires

    Full text link
    We investigate the ballistic electron transport in a two dimensional Quantum Wire under the action of an electric field (EyE_y). We demonstrate how the presence of a Spin Orbit coupling, due to the uniform electric confinement field gives a non-commutative effect as in the presence of a transverse magnetic field. We discuss how the non commutation implies an edge localization of the currents depending on the electron spins also giving a semi-classical spin dependent Hall current. We also discuss how it is possible obtain a quantized Spin Hall conductance in the ballistic transport regime by developing the Landauer formalism and show the coupling between the spin magnetic momentum and the orbital one due to the presence of a circulating current.Comment: 7 pages, 5 figures, accepted for publication in Phys. Rev. B, PACS: 72.25.-b, 72.10.-d, 72.15.Rn, 73.23.-b, 71.10.P
    • …
    corecore