1,048 research outputs found

    Determination of the absolute internal quantum efficiency of photoluminescence in GaN co-doped with Si and Zn

    Get PDF
    The optical properties of high-quality GaN co-doped with silicon and zinc are investigated by using temperature-dependent continuous-wave and time-resolved photoluminescence measurements. The blue luminescence band is related to the ZnGa acceptor in GaN:Si,Zn, which exhibits an exceptionally high absolute internal quantum efficiency (IQE). An IQE above 90% was calculated for several samples having different concentrations of Zn. Accurate and reliable values of the IQE were obtained by using several approaches based on rate equations. The concentrations of the ZnGa acceptors and free electrons were also estimated from the photoluminescence measurements

    Lock-in detection for pulsed electrically detected magnetic resonance

    Get PDF
    We show that in pulsed electrically detected magnetic resonance (pEDMR) signal modulation in combination with a lock-in detection scheme can reduce the low-frequency noise level by one order of magnitude and in addition removes the microwave-induced non-resonant background. This is exemplarily demonstrated for spin-echo measurements in phosphorus-doped Silicon. The modulation of the signal is achieved by cycling the phase of the projection pulse used in pEDMR for the read-out of the spin state.Comment: 4 pages, 2 figure

    Model-based comparison of organ at risk protection between VMAT and robustly optimised IMPT plans

    Get PDF
    The comparison between intensity-modulated proton therapy (IMPT) and volume-modulated arc therapy (VMAT) plans, based on models of normal tissue complication probabilities (NTCP), can support the choice of radiation modality. IMPT irradiation plans for 50 patients with head and neck tumours originally treated with photon therapy have been robustly optimised against density and setup uncertainties. The dose distribution has been calculated with a Monte Carlo (MC) algorithm. The comparison of the plans was based on dose-volume parameters in organs at risk (OARs) and NTCP-calculations for xerostomia, sticky saliva, dysphagia and tube feeding using Langendijk's model-based approach. While the dose distribution in the target volumes is similar, the IMPT plans show better protection of OARs. Therefore, it is not the high dose confirmation that constitutes the advantage of protons, but it is the reduction of the mid-to-low dose levels compared to photons. This work investigates to what extent the advantages of proton radiation are beneficial for the patient's post-therapeutic quality of life (QoL). As a result, approximately one third of the patients examined benefit significantly from proton therapy with regard to possible late side effects. Clinical data is needed to confirm the model-based calculations

    QED Corrections to Neutrino Electron Scattering

    Get PDF
    We evaluate the O(alpha) QED corrections to the recoil electron energy spectrum in the process nu_l + e --> nu_l + e (+gamma), where (+gamma) indicates the possible emission of a photon and l=e, mu or tau. The soft and hard bremsstrahlung differential cross sections are computed for an arbitrary value of the photon energy threshold. We also study the O(alpha) QED corrections to the differential cross section with respect to the total combined energy of the recoil electron and a possible accompanying photon. Their difference from the corrections to the electron spectrum is investigated. We discuss the relevance and applicability of both radiative corrections, emphasizing their role in the analysis of precise solar neutrino electron scattering experiments.Comment: 14 pages + 10 figures. Minimal changes, published versio

    Spectral fiber dosimetry with beryllium oxide for quality assurance in hadron radiation therapy

    Get PDF
    Using the radioluminescence light of solid state probes coupled to long and flexible fibers for dosimetry in radiotherapy offers many advantages in terms of probe size, robustness and cost efficiency. However, especially in hadron fields, radioluminophores exhibit quenching effects dependent on the linear energy transfer. This work describes the discovery of a spectral shift in the radioluminescence light of beryllium oxide in dependence on the residual range at therapeutic proton energies. A spectrally resolving measurement setup has been developed and tested in scanned proton fields. It is shown that such a system can not only quantitatively reconstruct the dose, but might also give information on the residual proton range at the point of measurement

    Orbit structure and (reversing) symmetries of toral endomorphisms on rational lattices

    Get PDF
    We study various aspects of the dynamics induced by integer matrices on the invariant rational lattices of the torus in dimension 2 and greater. Firstly, we investigate the orbit structure when the toral endomorphism is not invertible on the lattice, characterising the pretails of eventually periodic orbits. Next we study the nature of the symmetries and reversing symmetries of toral automorphisms on a given lattice, which has particular relevance to (quantum) cat maps.Comment: 29 pages, 3 figure

    One-pion transitions between heavy baryons in the constituent quark model

    Full text link
    Single pion transitions of S wave to S wave, P wave to S wave and P wave to P wave heavy baryons are analyzed in the framework of the Heavy Quark Symmetry limit (HQS). We use a constituent quark model picture for the light diquark system with an underlying SU(2N_{f}) X O(3) symmetry to reduce the number of the HQS coupling factors required to describe these transitions. We also use the quantum theory of angular momentum to rewrite the one-pion transitions constituent quark model results in a more general form using the 6j- and 9j-symbols. We finally estimate the decay rates of some single pion transitions between charm baryon states.Comment: Latex, 33 pages including 2 figures (Postscript). Some typos are corrected with minor changes. Two references were added to the final version which will appear in Phy. Rev.

    Lipid and protein content profiling of isolated native autophagic vesicles

    Get PDF
    Autophagy is responsible for clearance of an extensive portfolio of cargoes, which are sequestered into vesicles, called autophagosomes, and are delivered to lysosomes for degradation. The pathway is highly dynamic and responsive to several stress conditions. However, the phospholipid composition and protein contents of human autophagosomes under changing autophagy rates are elusive so far. Here, we introduce an antibody-based FACS-mediated approach for the isolation of native autophagic vesicles and ensured the quality of the preparations. Employing quantitative lipidomics, we analyze phospholipids present within human autophagic vesicles purified upon basal autophagy, starvation, and proteasome inhibition. Importantly, besides phosphoglycerides, we identify sphingomyelin within autophagic vesicles and show that the phospholipid composition is unaffected by the different conditions. Employing quantitative proteomics, we obtain cargo profiles of autophagic vesicles isolated upon the different treatment paradigms. Interestingly, starvation shows only subtle effects, while proteasome inhibition results in the enhanced presence of ubiquitin-proteasome pathway factors within autophagic vesicles. Thus, here we present a powerful method for the isolation of native autophagic vesicles, which enabled profound phospholipid and cargo analyses

    Isospin Breaking in Neutron β\beta-decay and SU(3) Violation in Semi-leptonic Hyperon Decays

    Get PDF
    Present precision measurements of the neutron life time lead to a CKM matrix element Vud|V_{ud}| which is three standard deviations off the value inferred from heavy quark decays etc. We investigate the possibility whether isospin-breaking effects in the neutron-to-proton vector current transition matrix element =1+δgV=1+\delta g_V could eventually close this gap. For that we calculate in chiral perturbation theory the effect of pion and kaon loops on the matrix element taking into account the mass differences of the charged and neutral mesons. We find a negligibly small isospin-breaking effect of δgV4105\delta g_V \simeq -4 \cdot 10^{-5}. The crucial quantity in the analysis of neutron beta-decay precision measurements is thus the radiative correction term ΔR\Delta_R. Furthermore, we calculate in heavy baryon chiral perturbation theory the SU(3) breaking effects on the vector transition charges of weak semi-leptonic hyperon decays. We find for these quantities channel-dependent relative deviations from the SU(3) limit which range from -10% to +1+1%.Comment: 6 pages, 1 figure, to be published in Physical Review C (brief report

    AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1

    Get PDF
    Damaged mitochondria are eliminated by mitophagy, a selective form of autophagy whose dysfunction associates with neurodegenerative diseases. PINK1, PARKIN and p62/SQTMS1 have been shown to regulate mitophagy, leaving hitherto ill-defined the contribution by key players in 'general' autophagy. In basal conditions, a pool of AMBRA1 - an upstream autophagy regulator and a PARKIN interactor - is present at the mitochondria, where its pro-autophagic activity is inhibited by Bcl-2. Here we show that, upon mitophagy induction, AMBRA1 binds the autophagosome adapter LC3 through a LIR (LC3 interacting region) motif, this interaction being crucial for regulating both canonical PARKIN-dependent and -independent mitochondrial clearance. Moreover, forcing AMBRA1 localization to the outer mitochondrial membrane unleashes a massive PARKIN- and p62-independent but LC3-dependent mitophagy. These results highlight a novel role for AMBRA1 as a powerful mitophagy regulator, through both canonical or noncanonical pathways
    corecore