325 research outputs found

    PUK3 CLINICAL IMPACT OF NONCOMPLIANCE AFTER RENAL TRANSPLANTATION

    Get PDF

    Computational and Biological Analogies for Understanding Fine-Tuned Parameters in Physics

    Full text link
    In this philosophical paper, we explore computational and biological analogies to address the fine-tuning problem in cosmology. We first clarify what it means for physical constants or initial conditions to be fine-tuned. We review important distinctions such as the dimensionless and dimensional physical constants, and the classification of constants proposed by Levy-Leblond. Then we explore how two great analogies, computational and biological, can give new insights into our problem. This paper includes a preliminary study to examine the two analogies. Importantly, analogies are both useful and fundamental cognitive tools, but can also be misused or misinterpreted. The idea that our universe might be modelled as a computational entity is analysed, and we discuss the distinction between physical laws and initial conditions using algorithmic information theory. Smolin introduced the theory of "Cosmological Natural Selection" with a biological analogy in mind. We examine an extension of this analogy involving intelligent life. We discuss if and how this extension could be legitimated. Keywords: origin of the universe, fine-tuning, physical constants, initial conditions, computational universe, biological universe, role of intelligent life, cosmological natural selection, cosmological artificial selection, artificial cosmogenesis.Comment: 25 pages, Foundations of Science, in pres

    Many-worlds interpretation of quantum theory and mesoscopic anthropic principle

    Full text link
    We suggest to combine the Anthropic Principle with Many-Worlds Interpretation of Quantum Theory. Realizing the multiplicity of worlds it provides an opportunity of explanation of some important events which are assumed to be extremely improbable. The Mesoscopic Anthropic Principle suggested here is aimed to explain appearance of such events which are necessary for emergence of Life and Mind. It is complementary to Cosmological Anthropic Principle explaining the fine tuning of fundamental constants. We briefly discuss various possible applications of Mesoscopic Anthropic Principle including the Solar Eclipses and assembling of complex molecules. Besides, we address the problem of Time's Arrow in the framework of Many-World Interpretation. We suggest the recipe for disentangling of quantities defined by fundamental physical laws and by an anthropic selection.Comment: 11 page

    Mechanisms explaining transitions between tonic and phasic firing in neuronal populations as predicted by a low dimensional firing rate model

    Get PDF
    Several firing patterns experimentally observed in neural populations have been successfully correlated to animal behavior. Population bursting, hereby regarded as a period of high firing rate followed by a period of quiescence, is typically observed in groups of neurons during behavior. Biophysical membrane-potential models of single cell bursting involve at least three equations. Extending such models to study the collective behavior of neural populations involves thousands of equations and can be very expensive computationally. For this reason, low dimensional population models that capture biophysical aspects of networks are needed. \noindent The present paper uses a firing-rate model to study mechanisms that trigger and stop transitions between tonic and phasic population firing. These mechanisms are captured through a two-dimensional system, which can potentially be extended to include interactions between different areas of the nervous system with a small number of equations. The typical behavior of midbrain dopaminergic neurons in the rodent is used as an example to illustrate and interpret our results. \noindent The model presented here can be used as a building block to study interactions between networks of neurons. This theoretical approach may help contextualize and understand the factors involved in regulating burst firing in populations and how it may modulate distinct aspects of behavior.Comment: 25 pages (including references and appendices); 12 figures uploaded as separate file

    The fundamental constants and their variation: observational status and theoretical motivations

    Full text link
    This article describes the various experimental bounds on the variation of the fundamental constants of nature. After a discussion on the role of fundamental constants, of their definition and link with metrology, the various constraints on the variation of the fine structure constant, the gravitational, weak and strong interactions couplings and the electron to proton mass ratio are reviewed. This review aims (1) to provide the basics of each measurement, (2) to show as clearly as possible why it constrains a given constant and (3) to point out the underlying hypotheses. Such an investigation is of importance to compare the different results, particularly in view of understanding the recent claims of the detections of a variation of the fine structure constant and of the electron to proton mass ratio in quasar absorption spectra. The theoretical models leading to the prediction of such variation are also reviewed, including Kaluza-Klein theories, string theories and other alternative theories and cosmological implications of these results are discussed. The links with the tests of general relativity are emphasized.Comment: 56 pages, l7 figures, submitted to Rev. Mod. Phy

    Human papillomavirus type 18 infection in a female renal allograft recipient : a case report

    Get PDF
    Publisher Copyright: © 2016 The Author(s).Background: Human papillomavirus type 18 is the second most common cause of cervical cancer and is found in 7 to 20 % of cases of cervical cancer. The oncogenic potential of high-risk human papillomavirus is associated with expression of early proteins E6 and E7. Due to long-term immunosuppressive therapy, renal transplant recipients have a higher risk of developing persistent human papillomavirus infection. Case presentation: A 29-year-old white woman from Latvia with chronic focal segmental glomerulosclerosis received renal allograft transplantation and was prescribed immunosuppressive therapy with cyclosporine, prednisolone, and mycophenolate mofetil. Two weeks after renal transplantation, her cervical swab was positive for human papillomavirus consensus sequences. After 6 months, quantitative polymerase chain reaction showed a high viral load of 3,630,789 copies/105 cells of high-risk human papillomavirus type 18 and expression of E6 and E7 oncogenes in her cervical swab and urine sample. One year after renal transplantation, the viral load in her cervical swab increased significantly to 7,413,102 copies/105 cells. Messenger ribonucleic acid of human papillomavirus type 18 E6 and E7 oncogenes were also detected. Shortly after this, she had an unsuccessful pregnancy which resulted in a spontaneous abortion at 6/7 weeks. Two months after the abortion her viral load sharply decreased to 39 copies/105 cells. Oncogenes E6 and E7 messenger ribonucleic acid expression was not observed in this period. Conclusions: This case report represents data which show that immunosuppressive therapy may increase the risk of developing persistent high-risk human papillomavirus infection with expression of E6 and E7 oncogenes in renal transplant recipients. However, even during this therapy the immune status of a recipient can improve and contribute to human papillomavirus viral load reduction. Spontaneous abortion can be considered a possible contributory factor in human papillomavirus clearance.publishersversionPeer reviewe
    corecore