2 research outputs found
Inverse approach to Einstein's equations for fluids with vanishing anisotropic stress tensor
We expand previous work on an inverse approach to Einstein Field Equations
where we include fluids with energy flux and consider the vanishing of the
anisotropic stress tensor. We consider the approach using warped product
spacetimes of class . Although restricted, these spacetimes include many
exact solutions of interest to compact object studies and to cosmological
models studies. The question explored here is as follows: given a spacetime
metric, what fluid flow (timelike congruence), if any, could generate the
spacetime via Einstein's equations. We calculate the flow from the condition of
a vanishing anisotropic stress tensor and give results in terms of the metric
functions in the three canonical types of coordinates. A condition for perfect
fluid sources is also provided. The framework developed is algorithmic and
suited for the study and validation of exact solutions using computer algebra
systems. The framework can be applied to solutions in comoving and non-comoving
frames of reference, and examples in different types of coordinates are worked
out.Comment: 15 pages, matches version to appear in Phys.Rev.