209 research outputs found

    Nonlinear optical probe of tunable surface electrons on a topological insulator

    Get PDF
    We use ultrafast laser pulses to experimentally demonstrate that the second-order optical response of bulk single crystals of the topological insulator Bi2_2Se3_3 is sensitive to its surface electrons. By performing surface doping dependence measurements as a function of photon polarization and sample orientation we show that second harmonic generation can simultaneously probe both the surface crystalline structure and the surface charge of Bi2_2Se3_3. Furthermore, we find that second harmonic generation using circularly polarized photons reveals the time-reversal symmetry properties of the system and is surprisingly robust against surface charging, which makes it a promising tool for spectroscopic studies of topological surfaces and buried interfaces

    Observation of a metal-to-insulator transition with both Mott-Hubbard and Slater characteristics in Sr_2IrO_4 from time-resolved photocarrier dynamics

    Get PDF
    We perform a time-resolved optical study of Sr_2IrO_4 to understand the influence of magnetic ordering on the low energy electronic structure of a strongly spin-orbit coupled J_(eff) = 1/2 Mott insulator. By studying the recovery dynamics of photoexcited carriers, we find that upon cooling through the Néel temperature T_N the system evolves continuously from a metal-like phase with fast (∼50 fs) and excitation density independent relaxation dynamics to a gapped phase characterized by slower (∼500 fs) excitation density-dependent bimolecular recombination dynamics, which is a hallmark of a Slater-type metal-to-insulator transition. However our data indicate that the high energy reflectivity associated with optical transitions into the unoccupied J_(eff) = 1/2 band undergoes the sharpest upturn at TN, which is consistent with a Mott-Hubbard type metal-to-insulator transition involving spectral weight transfer into an upper Hubbard band. These findings show Sr_2IrO_4 to be a unique system in which Slater- and Mott-Hubbard-type behaviors coexist and naturally explain the absence of anomalies at T_N in transport and thermodynamic measurements

    Structural Distortion-Induced Magnetoelastic Locking in Sr\u3csub\u3e2\u3c/sub\u3eIrO\u3csub\u3e4\u3c/sub\u3e Revealed through Nonlinear Optical Harmonic Generation

    Get PDF
    We report a global structural distortion in Sr2IrO4 using spatially resolved optical second and third harmonic generation rotational anisotropy measurements. A symmetry lowering from an I41/acd to I41/a space group is observed both above and below the Néel temperature that arises from a staggered tetragonal distortion of the oxygen octahedra. By studying an effective superexchange Hamiltonian that accounts for this lowered symmetry, we find that perfect locking between the octahedral rotation and magnetic moment canting angles can persist even in the presence of large noncubic local distortions. Our results explain the origin of the forbidden Bragg peaks recently observed in neutron diffraction experiments and reconcile the observations of strong tetragonal distortion and perfect magnetoelastic locking in Sr2IrO4

    A structural distortion induced magneto-elastic locking in Sr2_2IrO4_4 revealed through nonlinear optical harmonic generation

    Get PDF
    We report a global structural distortion in Sr2_2IrO4_4 using spatially resolved optical second and third harmonic generation rotational anisotropy measurements. A symmetry lowering from an I41/acdI4_{1}/acd to I41/aI4_{1}/a space group is observed both above and below the N\'{e}el temperature that arises from a staggered tetragonal distortion of the oxygen octahedra. By studying an effective super-exchange Hamiltonian that accounts for this lowered symmetry, we find that perfect locking between the octahedral rotation and magnetic moment canting angles can persist even in the presence of large non-cubic local distortions. Our results explain the origin of the forbidden Bragg peaks recently observed in neutron diffraction experiments and reconcile the observations of strong tetragonal distortion and perfect magneto-elastic locking in Sr2_2IrO4_4.Comment: 6 pages, 4 figure

    α\alpha-Scale Decoupling of the Mechanical Relaxation and Diverging Shear Wave Propagation Lengthscale in Triphenylphosphite

    Full text link
    We have performed depolarized Impulsive Stimulated Scattering experiments to observe shear acoustic phonons in supercooled triphenylphosphite (TPP) from ∼\sim10 - 500 MHz. These measurements, in tandem with previously performed longitudinal and shear measurements, permit further analyses of the relaxation dynamics of TPP within the framework of the mode coupling theory (MCT). Our results provide evidence of α\alpha coupling between the shear and longitudinal degrees of freedom up to a decoupling temperature TcT_c = 231 K. A lower bound length scale of shear wave propagation in liquids verified the exponent predicted by theory in the vicinity of the decoupling temperature

    Theoretical and experimental study of second harmonic generation from the surface of the topological insulator Bi_2Se_3

    Get PDF
    We develop a theoretical model that describes the second harmonic generation of light from the surface of the topological insulator Bi_2Se_3 and experimentally demonstrate that the technique is sensitive to the surface electrons. By performing a crystal symmetry analysis of Bi_2Se_3 (111) we determine the nonlinear electric susceptibility tensor elements that give rise to second harmonic generation. Using these results, we present a phenomenological model that shows that the relative magnitudes of these tensor elements can be determined by measuring the polarization and intensity of the radiated second harmonic light as a function of the in-plane crystal orientation and incident laser polarization. We describe optical techniques capable of isolating second harmonic light and, using these techniques, we measure the first-order linear optical and second-order nonlinear optical responses as a function of crystal orientation and laser polarization on bulk single crystals of Bi_2Se_3 (111). The experimental results are consistent with our theoretical description. By comparing the data to our theoretical model we determine that a portion of the measured second harmonic light originates from the accumulation region of Bi_2Se_3 (111), which we confirm by performing surface doping-dependent studies. Our results show that second harmonic generation is a promising tool for spectroscopic studies of topological surfaces and buried interfaces

    Tracking Cooper Pairs in a Cuprate Superconductor by Ultrafast Angle-Resolved Photoemission

    Full text link
    In high-temperature superconductivity, the process that leads to the formation of Cooper pairs, the fundamental charge carriers in any superconductor, remains mysterious. We use a femtosecond laser pump pulse to perturb superconducting Bi2Sr2CaCu2O8+{\delta}, and study subsequent dynamics using time- and angle-resolved photoemission and infrared reflectivity probes. Gap and quasiparticle population dynamics reveal marked dependencies on both excitation density and crystal momentum. Close to the d-wave nodes, the superconducting gap is sensitive to the pump intensity and Cooper pairs recombine slowly. Far from the nodes pumping affects the gap only weakly and recombination processes are faster. These results demonstrate a new window into the dynamical processes that govern quasiparticle recombination and gap formation in cuprates.Comment: 22 pages, 9 figure
    • …
    corecore