27,024 research outputs found

    Decoherence in a system of many two--level atoms

    Full text link
    I show that the decoherence in a system of NN degenerate two--level atoms interacting with a bosonic heat bath is for any number of atoms NN governed by a generalized Hamming distance (called ``decoherence metric'') between the superposed quantum states, with a time--dependent metric tensor that is specific for the heat bath.The decoherence metric allows for the complete characterization of the decoherence of all possible superpositions of many-particle states, and can be applied to minimize the over-all decoherence in a quantum memory. For qubits which are far apart, the decoherence is given by a function describing single-qubit decoherence times the standard Hamming distance. I apply the theory to cold atoms in an optical lattice interacting with black body radiation.Comment: replaced with published versio

    Helioseismic holography of simulated sunspots: magnetic and thermal contributions to travel times

    Full text link
    Wave propagation through sunspots involves conversion between waves of acoustic and magnetic character. In addition, the thermal structure of sunspots is very different than that of the quiet Sun. As a consequence, the interpretation of local helioseismic measurements of sunspots has long been a challenge. With the aim of understanding these measurements, we carry out numerical simulations of wave propagation through sunspots. Helioseismic holography measurements made from the resulting simulated wavefields show qualitative agreement with observations of real sunspots. We use additional numerical experiments to determine, separately, the influence of the thermal structure of the sunspot and the direct effect of the sunspot magnetic field. We use the ray approximation to show that the travel-time shifts in the thermal (non-magnetic) sunspot model are primarily produced by changes in the wave path due to the Wilson depression rather than variations in the wave speed. This shows that inversions for the subsurface structure of sunspots must account for local changes in the density. In some ranges of horizontal phase speed and frequency there is agreement (within the noise level in the simulations) between the travel times measured in the full magnetic sunspot model and the thermal model. If this conclusion proves to be robust for a wide range of models, it would suggest a path towards inversions for sunspot structure.Comment: Accepted for publication in The Astrophysical Journa

    Testing Helioseismic-Holography Inversions for Supergranular Flows Using Synthetic Data

    Get PDF
    Supergranulation is one of the most visible length scales of solar convection and has been studied extensively by local helioseismology. We use synthetic data computed with the Seismic Propagation through Active Regions and Convection (SPARC) code to test regularized-least squares (RLS) inversions of helioseismic holography measurements for a supergranulation-like flow. The code simulates the acoustic wavefield by solving the linearized three-dimensional Euler equations in Cartesian geometry. We model a single supergranulation cell with a simple, axisymmetric, mass-conserving flow. The use of simulated data provides an opportunity for direct evaluation of the accuracy of measurement and inversion techniques. The RLS technique applied to helioseismic-holography measurements is generally successful in reproducing the structure of the horizontal flow field of the model supergranule cell. The errors are significant in horizontal-flow inversions near the top and bottom of the computational domain as well as in vertical-flow inversions throughout the domain. We show that the errors in the vertical velocity are due largely to cross talk from the horizontal velocity.Comment: 22 pages, 12 figues, accepted for publication in Solar Physic

    Helioseismology of Pre-Emerging Active Regions II: Average Emergence Properties

    Full text link
    We report on average subsurface properties of pre-emerging active regions as compared to areas where no active region emergence was detected. Helioseismic holography is applied to samples of the two populations (pre-emergence and without emergence), each sample having over 100 members, which were selected to minimize systematic bias, as described in Leka et al. We find that there are statistically significant signatures (i.e., difference in the means of more than a few standard errors) in the average subsurface flows and the apparent wave speed that precede the formation of an active region. The measurements here rule out spatially extended flows of more than about 15 m/s in the top 20 Mm below the photosphere over the course of the day preceding the start of visible emergence. These measurements place strong constraints on models of active region formation.Comment: 15 pages, 10 figures, ApJ (published

    Validating Forward Modeling and Inversions of Helioseismic Holography Measurements

    Full text link
    Here we use synthetic data to explore the performance of forward models and inverse methods for helioseismic holography. Specifically, this work presents the first comprehensive test of inverse modeling for flows using lateral-vantage (deep-focus) holography. We derive sensitivity functions in the Born approximation. We then use these sensitivity functions in a series of forward models and inversions of flows from a publicly available magnetohydrodynamic quiet-Sun simulation. The forward travel times computed using the kernels generally compare favorably with measurements obtained by applying holography, in a lateral-vantage configuration, on a 15-hour time series of artificial Dopplergrams extracted from the simulation. Inversions for the horizontal flow components are able to reproduce the flows in the upper 3Mm of the domain, but are compromised by noise at greater depths.Comment: accepted for publication by the Astrophysical

    Prospects for the Detection of the Deep Solar Meridional Circulation

    Full text link
    We perform helioseismic holography to assess the noise in p-mode travel-time shifts which would form the basis of inferences of large-scale flows throughout the solar convection zone. We also derive the expected travel times from a parameterized return (equatorward) flow component of the meridional circulation at the base of the convection zone from forward models under the assumption of the ray and Born approximations. From estimates of the signal-to-noise ratio for measurements focused near the base of the convection zone, we conclude that the helioseismic detection of the deep meridional flow including the return component may not be possible using data spanning an interval less than a solar cycle

    Open charm contribution to dilepton spectra produced in nuclear collisions at SPS energies

    Get PDF
    Measurements of open charm hadro-production from CERN and Fermilab experiments are reviewed, with particular emphasis on the absolute cross sections and on their A and sqrt(s) dependences. Differential pt and xf cross sections calculated with the Pythia event generator are found to be in reasonable agreement with recent data. The calculations are scaled to nucleus-nucleus collisions and the expected lepton pair yield is deduced. The charm contribution to the low mass dilepton continuum observed by the CERES experiment is found to be negligible. In particular, it is shown that the observed low mass dilepton excess in S-Au collisions cannot be explained by charm enhancement.Comment: 19 pages, 12 eps figures included. To be published in Z.Phys.
    • …
    corecore