27,024 research outputs found
Decoherence in a system of many two--level atoms
I show that the decoherence in a system of degenerate two--level atoms
interacting with a bosonic heat bath is for any number of atoms governed by
a generalized Hamming distance (called ``decoherence metric'') between the
superposed quantum states, with a time--dependent metric tensor that is
specific for the heat bath.The decoherence metric allows for the complete
characterization of the decoherence of all possible superpositions of
many-particle states, and can be applied to minimize the over-all decoherence
in a quantum memory. For qubits which are far apart, the decoherence is given
by a function describing single-qubit decoherence times the standard Hamming
distance. I apply the theory to cold atoms in an optical lattice interacting
with black body radiation.Comment: replaced with published versio
Helioseismic holography of simulated sunspots: magnetic and thermal contributions to travel times
Wave propagation through sunspots involves conversion between waves of
acoustic and magnetic character. In addition, the thermal structure of sunspots
is very different than that of the quiet Sun. As a consequence, the
interpretation of local helioseismic measurements of sunspots has long been a
challenge. With the aim of understanding these measurements, we carry out
numerical simulations of wave propagation through sunspots. Helioseismic
holography measurements made from the resulting simulated wavefields show
qualitative agreement with observations of real sunspots. We use additional
numerical experiments to determine, separately, the influence of the thermal
structure of the sunspot and the direct effect of the sunspot magnetic field.
We use the ray approximation to show that the travel-time shifts in the thermal
(non-magnetic) sunspot model are primarily produced by changes in the wave path
due to the Wilson depression rather than variations in the wave speed. This
shows that inversions for the subsurface structure of sunspots must account for
local changes in the density. In some ranges of horizontal phase speed and
frequency there is agreement (within the noise level in the simulations)
between the travel times measured in the full magnetic sunspot model and the
thermal model. If this conclusion proves to be robust for a wide range of
models, it would suggest a path towards inversions for sunspot structure.Comment: Accepted for publication in The Astrophysical Journa
Testing Helioseismic-Holography Inversions for Supergranular Flows Using Synthetic Data
Supergranulation is one of the most visible length scales of solar convection
and has been studied extensively by local helioseismology. We use synthetic
data computed with the Seismic Propagation through Active Regions and
Convection (SPARC) code to test regularized-least squares (RLS) inversions of
helioseismic holography measurements for a supergranulation-like flow. The code
simulates the acoustic wavefield by solving the linearized three-dimensional
Euler equations in Cartesian geometry. We model a single supergranulation cell
with a simple, axisymmetric, mass-conserving flow.
The use of simulated data provides an opportunity for direct evaluation of
the accuracy of measurement and inversion techniques. The RLS technique applied
to helioseismic-holography measurements is generally successful in reproducing
the structure of the horizontal flow field of the model supergranule cell. The
errors are significant in horizontal-flow inversions near the top and bottom of
the computational domain as well as in vertical-flow inversions throughout the
domain. We show that the errors in the vertical velocity are due largely to
cross talk from the horizontal velocity.Comment: 22 pages, 12 figues, accepted for publication in Solar Physic
Helioseismology of Pre-Emerging Active Regions II: Average Emergence Properties
We report on average subsurface properties of pre-emerging active regions as
compared to areas where no active region emergence was detected. Helioseismic
holography is applied to samples of the two populations (pre-emergence and
without emergence), each sample having over 100 members, which were selected to
minimize systematic bias, as described in Leka et al. We find that there are
statistically significant signatures (i.e., difference in the means of more
than a few standard errors) in the average subsurface flows and the apparent
wave speed that precede the formation of an active region. The measurements
here rule out spatially extended flows of more than about 15 m/s in the top 20
Mm below the photosphere over the course of the day preceding the start of
visible emergence. These measurements place strong constraints on models of
active region formation.Comment: 15 pages, 10 figures, ApJ (published
Validating Forward Modeling and Inversions of Helioseismic Holography Measurements
Here we use synthetic data to explore the performance of forward models and
inverse methods for helioseismic holography. Specifically, this work presents
the first comprehensive test of inverse modeling for flows using
lateral-vantage (deep-focus) holography. We derive sensitivity functions in the
Born approximation. We then use these sensitivity functions in a series of
forward models and inversions of flows from a publicly available
magnetohydrodynamic quiet-Sun simulation. The forward travel times computed
using the kernels generally compare favorably with measurements obtained by
applying holography, in a lateral-vantage configuration, on a 15-hour time
series of artificial Dopplergrams extracted from the simulation. Inversions for
the horizontal flow components are able to reproduce the flows in the upper 3Mm
of the domain, but are compromised by noise at greater depths.Comment: accepted for publication by the Astrophysical
Prospects for the Detection of the Deep Solar Meridional Circulation
We perform helioseismic holography to assess the noise in p-mode travel-time
shifts which would form the basis of inferences of large-scale flows throughout
the solar convection zone. We also derive the expected travel times from a
parameterized return (equatorward) flow component of the meridional circulation
at the base of the convection zone from forward models under the assumption of
the ray and Born approximations. From estimates of the signal-to-noise ratio
for measurements focused near the base of the convection zone, we conclude that
the helioseismic detection of the deep meridional flow including the return
component may not be possible using data spanning an interval less than a solar
cycle
Open charm contribution to dilepton spectra produced in nuclear collisions at SPS energies
Measurements of open charm hadro-production from CERN and Fermilab
experiments are reviewed, with particular emphasis on the absolute cross
sections and on their A and sqrt(s) dependences. Differential pt and xf cross
sections calculated with the Pythia event generator are found to be in
reasonable agreement with recent data. The calculations are scaled to
nucleus-nucleus collisions and the expected lepton pair yield is deduced. The
charm contribution to the low mass dilepton continuum observed by the CERES
experiment is found to be negligible. In particular, it is shown that the
observed low mass dilepton excess in S-Au collisions cannot be explained by
charm enhancement.Comment: 19 pages, 12 eps figures included. To be published in Z.Phys.
- …