76,753 research outputs found

    Nuclear particle detection using a track-recording solid

    Get PDF
    The design of the nuclear particle detector located in Purdue University's Get Away Special package which was flown aboard STS-7 is detailed. The experiment consisted of a stack of particle-detecting polymer sheets. The sheets show positive results of tracks throughout the block. A slide of each sheet was made for further analysis. Recommendations for similar experiments performed in the future are discussed

    Thermodynamics of water modeled using ab initio simulations

    Full text link
    We regularize the potential distribution framework to calculate the excess free energy of liquid water simulated with the BLYP-D density functional. The calculated free energy is in fair agreement with experiments but the excess internal energy and hence also the excess entropy are not. Our work emphasizes the importance of thermodynamic characterization in assessing the quality of electron density functionals in describing liquid water and hydration phenomena

    Absolute intensities for the ultraviolet γ bands of NO

    Get PDF
    Absolute intensities have been measured for three of the ultraviolet γ bands of NO. The corresponding electronic absorption oscillator strength is estimated to be 0.0024±0.0004

    Assessing the geographic dimensions of London's innovation networks

    Get PDF
    A wide range of authors have highlighted the potential benefits for innovation that may arise from effective networking between organisations along and across the supply-chain. As many organisations have downsized or out-sourced basic research activities Universities have an increasingly important role within such networks. A number of UK initiatives have been established to encourage greater 'entanglement' between academia and commerce; the London Technology Network is one example which is intended to encourage interactions between London's leading research institutes and innovation organisations. Using the detailed data acquired by this network this development paper is intended to investigate the geographic distribution of these activities with the aim of establishing the extent to which location and/or distance play a significant role in participation in the network's activities. A wide range of authors have highlighted the potential benefits for innovation that may arise from effective networking between organisations along and across the supply-chain. As many organisations have downsized or out-sourced basic research activities Universities have an increasingly important role within such networks. A number of UK initiatives have been established to encourage greater 'entanglement' between academia and commerce; the London Technology Network is one example which is intended to encourage interactions between London's leading research institutes and innovation organisations. Using the detailed data acquired by this network this development paper is intended to investigate the geographic distribution of these activities with the aim of establishing the extent to which location and/or distance play a significant role in participation in the network's activities

    Learning by Seeing by Doing: Arithmetic Word Problems

    Get PDF
    Learning by doing in pursuit of real-world goals has received much attention from education researchers but has been unevenly supported by mathematics education software at the elementary level, particularly as it involves arithmetic word problems. In this article, we give examples of doing-oriented tools that might promote children\u27s ability to see significant abstract structures in mathematical situations. The reflection necessary for such seeing is motivated by activities and contexts that emphasize affective and social aspects. Natural language, as a representation already familiar to children, is key in these activities, both as a means of mathematical expression and as a link between situations and various abstract representations. These tools support children\u27s ownership of a mathematical problem and its expression; remote sharing of problems and data; software interpretation of children\u27s own word problems; play with dynamically linked representations with attention to children\u27s prior connections; and systematic problem variation based on empirically determined level of difficulty

    Nucleon-nucleon potentials in phase-space representation

    Get PDF
    A phase-space representation of nuclear interactions, which depends on the distance r\vec{r} and relative momentum p\vec{p} of the nucleons, is presented. A method is developed that permits to extract the interaction V(r,p)V(\vec{r},\vec{p}) from antisymmetrized matrix elements given in a spherical basis with angular momentum quantum numbers, either in momentum or coordinate space representation. This representation visualizes in an intuitive way the non-local behavior introduced by cutoffs in momentum space or renormalization procedures that are used to adapt the interaction to low momentum many-body Hilbert spaces, as done in the unitary correlation operator method or with the similarity renormalization group. It allows to develop intuition about the various interactions and illustrates how the softened interactions reduce the short-range repulsion in favor of non-locality or momentum dependence while keeping the scattering phase shifts invariant. It also reveals that these effective interactions can have undesired complicated momentum dependencies at momenta around and above the Fermi momentum. Properties, similarities and differences of the phase-space representations of the Argonne and the N3LO chiral potential, and their UCOM and SRG derivatives are discussed

    Triviality of the 2D stochastic Allen-Cahn equation

    Get PDF
    We consider the stochastic Allen-Cahn equation driven by mollified space-time white noise. We show that, as the mollifier is removed, the solutions converge weakly to 0, independently of the initial condition. If the intensity of the noise simultaneously converges to 0 at a sufficiently fast rate, then the solutions converge to those of the deterministic equation. At the critical rate, the limiting solution is still deterministic, but it exhibits an additional damping term

    Determining the Shallow Surface Velocity at the Apollo 17 Landing Site

    Get PDF
    Many studies have been performed to determine the shallow surface velocity model at the Apollo 17 landing site. The Lunar Seismic Profiling Experiment (LSPE) had both an active component with eight explosive packages (EPs) and a passive experiment collecting data at various time intervals. Using the eight EPs, the initial shallow surface velocity model was determined to be 250 m/s in the first layer of depth 248 m, 1200 m/s with a depth of 927 m in the second layer, and 4000 m/s down to a depth of 2 km in the third layer. Have performed variations on this study to produce new velocity models shown. Recent studies have also been reanalyzing the passive LSPE data and have found three different thermal moonquake event types occurring at different times within the lunar day. The current goal of the project is to collocate the thermal moonquakes to physical surface features to determine the breakdown of lunar rocks. However, to locate shallow surface events, an accurate velocity model is needed. Presented a thermal moonquake location algorithm using first order approximation, including surface events only. To improve these approximations, a shallow surface velocity is needed
    corecore