35,521 research outputs found

    Alcoa wind turbines

    Get PDF
    An overview of Alcoa's wind energy program is given with emphasis on the the development of a low cost, reliable Darrieus Vertical Axis Wind Turbine System. The design layouts and drawings for fabrication are now complete, while fabrication and installation to utilize the design are expected to begin shortly

    The twisted Floer homology of torus bundles

    Full text link
    Given a torus bundle YY over the circle and a cohomology class [ω]H2(Y;Z)[\omega]\in H^2(Y;\mathbb{Z}) which evaluates nontrivially on the fiber, we compute the Heegaard Floer homology of YY with twisted coefficients in the universal Novikov ring.Comment: 12 pages, 1 figur

    Karhunen-Lo\`eve expansion for a generalization of Wiener bridge

    Get PDF
    We derive a Karhunen-Lo\`eve expansion of the Gauss process Btg(t)01g(u)dBuB_t - g(t)\int_0^1 g'(u)\,d B_u, t[0,1]t\in[0,1], where (Bt)t[0,1](B_t)_{t\in[0,1]} is a standard Wiener process and g:[0,1]Rg:[0,1]\to R is a twice continuously differentiable function with g(0)=0g(0) = 0 and 01(g(u))2du=1\int_0^1 (g'(u))^2\,d u =1. This process is an important limit process in the theory of goodness-of-fit tests. We formulate two special cases with the function g(t)=2πsin(πt)g(t)=\frac{\sqrt{2}}{\pi}\sin(\pi t), t[0,1]t\in[0,1], and g(t)=tg(t)=t, t[0,1]t\in[0,1], respectively. The latter one corresponds to the Wiener bridge over [0,1][0,1] from 00 to 00.Comment: 25 pages, 1 figure. The appendix is extende

    Constructing solutions to the Bj\"orling problem for isothermic surfaces by structure preserving discretization

    Get PDF
    In this article, we study an analog of the Bj\"orling problem for isothermic surfaces (that are more general than minimal surfaces): given a real analytic curve γ\gamma in R3{\mathbb R}^3, and two analytic non-vanishing orthogonal vector fields vv and ww along γ\gamma, find an isothermic surface that is tangent to γ\gamma and that has vv and ww as principal directions of curvature. We prove that solutions to that problem can be obtained by constructing a family of discrete isothermic surfaces (in the sense of Bobenko and Pinkall) from data that is sampled along γ\gamma, and passing to the limit of vanishing mesh size. The proof relies on a rephrasing of the Gauss-Codazzi-system as analytic Cauchy problem and an in-depth-analysis of its discretization which is induced from the geometry of discrete isothermic surfaces. The discrete-to-continuous limit is carried out for the Christoffel and the Darboux transformations as well.Comment: 29 pages, some figure

    Approximation of conformal mappings using conformally equivalent triangular lattices

    Get PDF
    Consider discrete conformal maps defined on the basis of two conformally equivalent triangle meshes, that is edge lengths are related by scale factors associated to the vertices. Given a smooth conformal map ff, we show that it can be approximated by such discrete conformal maps fϵf^\epsilon. In particular, let TT be an infinite regular triangulation of the plane with congruent triangles and only acute angles (i.e.\ <π/2<\pi/2). We scale this tiling by ϵ>0\epsilon>0 and approximate a compact subset of the domain of ff with a portion of it. For ϵ\epsilon small enough we prove that there exists a conformally equivalent triangle mesh whose scale factors are given by logf\log|f'| on the boundary. Furthermore we show that the corresponding discrete conformal maps fϵf^\epsilon converge to ff uniformly in C1C^1 with error of order ϵ\epsilon.Comment: 14 pages, 3 figures; v2 typos corrected, revised introduction, some proofs extende

    Efficiency optimization in a correlation ratchet with asymmetric unbiased fluctuations

    Full text link
    The efficiency of a Brownian particle moving in periodic potential in the presence of asymmetric unbiased fluctuations is investigated. We found that there is a regime where the efficiency can be a peaked function of temperature, which proves that thermal fluctuations facilitate the efficiency of energy transformation, contradicting the earlier findings (H. kamegawa et al. Phys. Rev. Lett. 80 (1998) 5251). It is also found that the mutual interplay between asymmetry of fluctuation and asymmetry of the potential may induce optimized efficiency at finite temperature. The ratchet is not most efficiency when it gives maximum current.Comment: 10 pages, 7 figure

    Modeling pedestrian evacuation movement in a swaying ship

    Full text link
    With the advance in living standard, cruise travel has been rapidly expanding around the world in recent years. The transportation of passengers in water has also made a rapid development. It is expected that ships will be more and more widely used. Unfortunately, ship disasters occurred in these years caused serious losses. It raised the concern on effectiveness of passenger evacuation on ships. The present study thus focuses on pedestrian evacuation features on ships. On ships, passenger movements are affected by the periodical water motion and thus are quite different from the characteristic when walking on static horizontal floor. Taking into consideration of this special feature, an agent-based pedestrian model is formulized and the effect of ship swaying on pedestrian evacuation efficiency is investigated. Results indicated that the proposed model can be used to quantify the special evacuation process on ships.Comment: Traffic and Granular Flow'15, At Delft, the Netherland
    corecore