27,600 research outputs found

    Computing the Least-core and Nucleolus for Threshold Cardinality Matching Games

    Full text link
    Cooperative games provide a framework for fair and stable profit allocation in multi-agent systems. \emph{Core}, \emph{least-core} and \emph{nucleolus} are such solution concepts that characterize stability of cooperation. In this paper, we study the algorithmic issues on the least-core and nucleolus of threshold cardinality matching games (TCMG). A TCMG is defined on a graph G=(V,E)G=(V,E) and a threshold TT, in which the player set is VV and the profit of a coalition SVS\subseteq V is 1 if the size of a maximum matching in G[S]G[S] meets or exceeds TT, and 0 otherwise. We first show that for a TCMG, the problems of computing least-core value, finding and verifying least-core payoff are all polynomial time solvable. We also provide a general characterization of the least core for a large class of TCMG. Next, based on Gallai-Edmonds Decomposition in matching theory, we give a concise formulation of the nucleolus for a typical case of TCMG which the threshold TT equals 11. When the threshold TT is relevant to the input size, we prove that the nucleolus can be obtained in polynomial time in bipartite graphs and graphs with a perfect matching

    Handling Attrition in Longitudinal Studies: The Case for Refreshment Samples

    Get PDF
    Panel studies typically suffer from attrition, which reduces sample size and can result in biased inferences. It is impossible to know whether or not the attrition causes bias from the observed panel data alone. Refreshment samples - new, randomly sampled respondents given the questionnaire at the same time as a subsequent wave of the panel - offer information that can be used to diagnose and adjust for bias due to attrition. We review and bolster the case for the use of refreshment samples in panel studies. We include examples of both a fully Bayesian approach for analyzing the concatenated panel and refreshment data, and a multiple imputation approach for analyzing only the original panel. For the latter, we document a positive bias in the usual multiple imputation variance estimator. We present models appropriate for three waves and two refreshment samples, including nonterminal attrition. We illustrate the three-wave analysis using the 2007-2008 Associated Press-Yahoo! News Election Poll.Comment: Published in at http://dx.doi.org/10.1214/13-STS414 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Mechanical Properties of Glass Forming Systems

    Full text link
    We address the interesting temperature range of a glass forming system where the mechanical properties are intermediate between those of a liquid and a solid. We employ an efficient Monte-Carlo method to calculate the elastic moduli, and show that in this range of temperatures the moduli are finite for short times and vanish for long times, where `short' and `long' depend on the temperature. By invoking some exact results from statistical mechanics we offer an alternative method to compute shear moduli using Molecular Dynamics simulations, and compare those to the Monte-Carlo method. The final conclusion is that these systems are not "viscous fluids" in the usual sense, as their actual time-dependence concatenates solid-like materials with varying local shear moduli

    Quantum secret sharing between m-party and n-party with six states

    Full text link
    We propose a quantum secret sharing scheme between mm-party and nn-party using three conjugate bases, i.e. six states. A sequence of single photons, each of which is prepared in one of the six states, is used directly to encode classical information in the quantum secret sharing process. In this scheme, each of all mm members in group 1 choose randomly their own secret key individually and independently, and then directly encode their respective secret information on the states of single photons via unitary operations, then the last one (the mmth member of group 1) sends 1/n1/n of the resulting qubits to each of group 2. By measuring their respective qubits, all members in group 2 share the secret information shared by all members in group 1. The secret message shared by group 1 and group 2 in such a way that neither subset of each group nor the union of a subset of group 1 and a subset of group 2 can extract the secret message, but each whole group (all the members of each group) can. The scheme is asymptotically 100% in efficiency. It makes the Trojan horse attack with a multi-photon signal, the fake-signal attack with EPR pairs, the attack with single photons, and the attack with invisible photons to be nullification. We show that it is secure and has an advantage over the one based on two conjugate bases. We also give the upper bounds of the average success probabilities for dishonest agent eavesdropping encryption using the fake-signal attack with any two-particle entangled states. This protocol is feasible with present-day technique.Comment: 7 page

    Implications of Cosmic Repulsion for Gravitational Theory

    Full text link
    In this paper we present a general, model independent analysis of a recently detected apparent cosmic repulsion, and discuss its potential implications for gravitational theory. In particular, we show that a negatively spatially curved universe acts like a diverging refractive medium, to thus naturally cause galaxies to accelerate away from each other. Additionally, we show that it is possible for a cosmic acceleration to only be temporary, with some accelerating universes actually being able to subsequently recontract.Comment: RevTeX, 13 page

    Analytical Solution of Electron Spin Decoherence Through Hyperfine Interaction in a Quantum Dot

    Full text link
    We analytically solve the {\it Non-Markovian} single electron spin dynamics due to hyperfine interaction with surrounding nuclei in a quantum dot. We use the equation-of-motion method assisted with a large field expansion, and find that virtual nuclear spin flip-flops mediated by the electron contribute significantly to a complete decoherence of transverse electron spin correlation function. Our results show that a 90% nuclear polarization can enhance the electron spin T2T_2 time by almost two orders of magnitude. In the long time limit, the electron spin correlation function has a non-exponential 1/t21/t^2 decay in the presence of both polarized and unpolarized nuclei.Comment: 4 pages, 3 figure

    Nonexistence of self-similar singularities for the 3D incompressible Euler equations

    Full text link
    We prove that there exists no self-similar finite time blowing up solution to the 3D incompressible Euler equations. By similar method we also show nonexistence of self-similar blowing up solutions to the divergence-free transport equation in Rn\Bbb R^n. This result has direct applications to the density dependent Euler equations, the Boussinesq system, and the quasi-geostrophic equations, for which we also show nonexistence of self-similar blowing up solutions.Comment: This version refines the previous one by relaxing the condition of compact support for the vorticit

    Ferromagnetic phase transition for the spanning-forest model (q \to 0 limit of the Potts model) in three or more dimensions

    Get PDF
    We present Monte Carlo simulations of the spanning-forest model (q \to 0 limit of the ferromagnetic Potts model) in spatial dimensions d=3,4,5. We show that, in contrast to the two-dimensional case, the model has a "ferromagnetic" second-order phase transition at a finite positive value w_c. We present numerical estimates of w_c and of the thermal and magnetic critical exponents. We conjecture that the upper critical dimension is 6.Comment: LaTex2e, 4 pages; includes 6 Postscript figures; Version 2 has expanded title as published in PR
    corecore