5,240 research outputs found

    A momentum-space representation of Feynman propagator in Riemann-Cartan spacetime

    Full text link
    We first construct generalized Riemann-normal coordinates by using autoparallels, instead of geodesics, in an arbitrary Riemann-Cartan spacetime. With the aid of generalized Riemann-normal coordinates and their associated orthonormal frames, we obtain a momentum-space representation of the Feynman propagator for scalar fields, which is a direct generalization of Bunch and Parker's works to curved spacetime with torsion. We further derive the proper-time representation in nn dimensional Riemann-Cartan spacetime from the momentum-space representation. It leads us to obtain the renormalization of one-loop effective Lagrangians of free scalar fields by using dimensional regularization. When torsion tensor vanishes, our resulting momentum-space representation returns to the standard Riemannian results.Comment: 12 page

    Near-Infrared MOSFIRE Spectra of Dusty Star-Forming Galaxies at 0.2<z<4

    Get PDF
    We present near-infrared and optical spectroscopic observations of a sample of 450μ\mum and 850μ\mum-selected dusty star-forming galaxies (DSFGs) identified in a 400 arcmin2^2 area in the COSMOS field. Thirty-one sources of the 102 targets were spectroscopically confirmed at 0.2<z<40.2<z<4, identified primarily in the near-infrared with Keck MOSFIRE and some in the optical with Keck LRIS and DEIMOS. The low rate of confirmation is attributable both to high rest-frame optical obscuration in our targets and limited sensitivity to certain redshift ranges. The high-quality photometric redshifts available in the COSMOS field allow us to test the robustness of photometric redshifts for DSFGs. We find a subset (11/3135\approx35%) of DSFGs with inaccurate (Δz/(1+z)>0.2\Delta z/(1+z)>0.2) or non-existent photometric redshifts; these have very distinct spectral energy distributions from the remaining DSFGs, suggesting a decoupling of highly obscured and unobscured components. We present a composite rest-frame 4300--7300\AA\ spectrum for DSFGs, and find evidence of 200±\pm30 km s1^{-1} gas outflows. Nebular line emission for a sub-sample of our detections indicate that hard ionizing radiation fields are ubiquitous in high-z DSFGs, even more so than typical mass or UV-selected high-z galaxies. We also confirm the extreme level of dust obscuration in DSFGs, measuring very high Balmer decrements, and very high ratios of IR to UV and IR to Hα\alpha luminosities. This work demonstrates the need to broaden the use of wide bandwidth technology in the millimeter to the spectroscopic confirmations of large samples of high-z DSFGs, as the difficulty in confirming such sources at optical/near-infrared wavelengths is exceedingly challenging given their obscuration.Comment: 14 pages, 13 figures, ApJ accepted. Composite DSFG Halpha spectrum available at www.as.utexas.edu/~cmcasey/downloads.htm

    Invisible Higgs Boson Decay into Massive Neutrinos of 4th Generation

    Get PDF
    Results from several recent experiments provide inderect evidences in the favor of existence of a 4th generation neutrino. Such a neutrino of mass about 50 GeV is compatible with current physical and astrophysical constraints and well motivated in the framework of superstring phenomenology. If sufficiently stable the existence of such a neutrino leads to the drastic change of Higgs boson physics: for a wide range of Higgs boson masses the dominant mode of Higgs boson decay is invisible and the branching ratios for the most promising modes of Higgs boson search are significantly reduced. The proper strategy of Higgs boson searches in such a framework is discussed. It is shown that in the same framework the absence of a signal in the search for invisible Higgs boson decay at LEP means either that the mass of Higgs is greater than 113.5 GeV or that the mass difference between the Higgs mass and doubled neutrino mass is small.Comment: 8 pages, 2 figure

    Uncertainties of the Inclusive Higgs Production Cross Section at the Tevatron and the LHC

    Full text link
    We study uncertainties of the predicted inclusive Higgs production cross section due to the uncertainties of parton distribution functions (PDF). Particular attention is given to bbH Yukawa coupling enhanced production mechanisms in beyond SM scenarios, such as MSSM. The PDF uncertainties are determined by the robust Lagrange Multiplier method within the CTEQ global analysis framework. We show that PDF uncertainties dominate over theoretical uncertainties of the perturbative calculation (usually estimated by the scale dependence of the calculated cross sections), except for low Higgs masses at LHC. Thus for the proper interpretation of any Higgs signal, and for better understanding of the underlying electroweak symmetry breaking mechanism, it is important to gain better control of the uncertainties of the PDFs.Comment: LaTeX, JHEP, 19 pages, 14 figure

    Retrograde semaphorin-plexin signalling drives homeostatic synaptic plasticity.

    Get PDF
    Homeostatic signalling systems ensure stable but flexible neural activity and animal behaviour. Presynaptic homeostatic plasticity is a conserved form of neuronal homeostatic signalling that is observed in organisms ranging from Drosophila to human. Defining the underlying molecular mechanisms of neuronal homeostatic signalling will be essential in order to establish clear connections to the causes and progression of neurological disease. During neural development, semaphorin-plexin signalling instructs axon guidance and neuronal morphogenesis. However, semaphorins and plexins are also expressed in the adult brain. Here we show that semaphorin 2b (Sema2b) is a target-derived signal that acts upon presynaptic plexin B (PlexB) receptors to mediate the retrograde, homeostatic control of presynaptic neurotransmitter release at the neuromuscular junction in Drosophila. Further, we show that Sema2b-PlexB signalling regulates presynaptic homeostatic plasticity through the cytoplasmic protein Mical and the oxoreductase-dependent control of presynaptic actin. We propose that semaphorin-plexin signalling is an essential platform for the stabilization of synaptic transmission throughout the developing and mature nervous system. These findings may be relevant to the aetiology and treatment of diverse neurological and psychiatric diseases that are characterized by altered or inappropriate neural function and behaviour

    A Turnover in the Galaxy Main Sequence of Star Formation at M1010MM_{*} \sim 10^{10} M_{\odot} for Redshifts z<1.3z < 1.3

    Full text link
    The relationship between galaxy star formation rates (SFR) and stellar masses (MM_\ast) is re-examined using a mass-selected sample of \sim62,000 star-forming galaxies at z1.3z \le 1.3 in the COSMOS 2-deg2^2 field. Using new far-infrared photometry from HerschelHerschel-PACS and SPIRE and SpitzerSpitzer-MIPS 24 μ\mum, along with derived infrared luminosities from the NRK method based on galaxies' locations in the restframe color-color diagram (NUVr)(NUV - r) vs. (rK)(r - K), we are able to more accurately determine total SFRs for our complete sample. At all redshifts, the relationship between median SFRSFR and MM_\ast follows a power-law at low stellar masses, and flattens to nearly constant SFR at high stellar masses. We describe a new parameterization that provides the best fit to the main sequence and characterizes the low mass power-law slope, turnover mass, and overall scaling. The turnover in the main sequence occurs at a characteristic mass of about M01010MM_{0} \sim 10^{10} M_{\odot} at all redshifts. The low mass power-law slope ranges from 0.9-1.3 and the overall scaling rises in SFR as a function of (1+z)4.12±0.10(1+z)^{4.12 \pm 0.10}. A broken power-law fit below and above the turnover mass gives relationships of SFRM0.88±0.06SFR \propto M_{*}^{0.88 \pm 0.06} below the turnover mass and SFRM0.27±0.04SFR \propto M_{*}^{0.27 \pm 0.04} above the turnover mass. Galaxies more massive than M1010 MM_\ast \gtrsim 10^{10}\ M_{\rm \odot} have on average, a much lower specific star formation rate (sSFR) than would be expected by simply extrapolating the traditional linear fit to the main sequence found for less massive galaxies.Comment: 16 pages, 7 figures. Accepted for publication in Ap

    Ultra-broadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab

    Get PDF
    We present an ultra broadband thin-film infrared absorber made of saw-toothed anisotropic metamaterial. Absorbtivity of higher than 95% at normal incidence is supported in a wide range of frequencies, where the full absorption width at half maximum is about 86%. Such property is retained well at a very wide range of incident angles too. Light of shorter wavelengths are harvested at upper parts of the sawteeth of smaller widths, while light of longer wavelengths are trapped at lower parts of larger tooth widths. This phenomenon is explained by the slowlight modes in anisotropic metamaterial waveguide. Our study can be applied in the field of designing photovoltaic devices and thermal emitters.Comment: 12 pages, 4 picture

    Spectral function of the electron in a superconducting RVB state

    Full text link
    We present a model calculation of the spectral function of an electron in a superconducting resonating valence bond (RVB) state. The RVB state, described by the phase-string mean field theory is characterized by three important features: (i) spin-charge separation, (ii) short range antiferromagnetic correlations, and (iii) holon condensation. The results of our calculation are in good agreement with data obtained from Angle Resolved Photoemission Spectroscopy (ARPES) in superconducting Bi 2212 at optimal doping concentration.Comment: 4 pages, 3 figure

    Dimensionality of Carbon Nanomaterials Determines the Binding and Dynamics of Amyloidogenic Peptides: Multiscale Theoretical Simulations

    Get PDF
    Experimental studies have demonstrated that nanoparticles can affect the rate of protein self-assembly, possibly interfering with the development of protein misfolding diseases such as Alzheimer's, Parkinson's and prion disease caused by aggregation and fibril formation of amyloid-prone proteins. We employ classical molecular dynamics simulations and large-scale density functional theory calculations to investigate the effects of nanomaterials on the structure, dynamics and binding of an amyloidogenic peptide apoC-II(60-70). We show that the binding affinity of this peptide to carbonaceous nanomaterials such as C60, nanotubes and graphene decreases with increasing nanoparticle curvature. Strong binding is facilitated by the large contact area available for π-stacking between the aromatic residues of the peptide and the extended surfaces of graphene and the nanotube. The highly curved fullerene surface exhibits reduced efficiency for π-stacking but promotes increased peptide dynamics. We postulate that the increase in conformational dynamics of the amyloid peptide can be unfavorable for the formation of fibril competent structures. In contrast, extended fibril forming peptide conformations are promoted by the nanotube and graphene surfaces which can provide a template for fibril-growth

    Quantisations of piecewise affine maps on the torus and their quantum limits

    Full text link
    For general quantum systems the semiclassical behaviour of eigenfunctions in relation to the ergodic properties of the underlying classical system is quite difficult to understand. The Wignerfunctions of eigenstates converge weakly to invariant measures of the classical system, the so called quantum limits, and one would like to understand which invariant measures can occur that way, thereby classifying the semiclassical behaviour of eigenfunctions. We introduce a class of maps on the torus for whose quantisations we can understand the set of quantum limits in great detail. In particular we can construct examples of ergodic maps which have singular ergodic measures as quantum limits, and examples of non-ergodic maps where arbitrary convex combinations of absolutely continuous ergodic measures can occur as quantum limits. The maps we quantise are obtained by cutting and stacking
    corecore