5,240 research outputs found
A momentum-space representation of Feynman propagator in Riemann-Cartan spacetime
We first construct generalized Riemann-normal coordinates by using
autoparallels, instead of geodesics, in an arbitrary Riemann-Cartan spacetime.
With the aid of generalized Riemann-normal coordinates and their associated
orthonormal frames, we obtain a momentum-space representation of the Feynman
propagator for scalar fields, which is a direct generalization of Bunch and
Parker's works to curved spacetime with torsion. We further derive the
proper-time representation in dimensional Riemann-Cartan spacetime from the
momentum-space representation. It leads us to obtain the renormalization of
one-loop effective Lagrangians of free scalar fields by using dimensional
regularization. When torsion tensor vanishes, our resulting momentum-space
representation returns to the standard Riemannian results.Comment: 12 page
Near-Infrared MOSFIRE Spectra of Dusty Star-Forming Galaxies at 0.2<z<4
We present near-infrared and optical spectroscopic observations of a sample
of 450m and 850m-selected dusty star-forming galaxies (DSFGs)
identified in a 400 arcmin area in the COSMOS field. Thirty-one sources of
the 102 targets were spectroscopically confirmed at , identified
primarily in the near-infrared with Keck MOSFIRE and some in the optical with
Keck LRIS and DEIMOS. The low rate of confirmation is attributable both to high
rest-frame optical obscuration in our targets and limited sensitivity to
certain redshift ranges. The high-quality photometric redshifts available in
the COSMOS field allow us to test the robustness of photometric redshifts for
DSFGs. We find a subset (11/31%) of DSFGs with inaccurate () or non-existent photometric redshifts; these have very distinct
spectral energy distributions from the remaining DSFGs, suggesting a decoupling
of highly obscured and unobscured components. We present a composite rest-frame
4300--7300\AA\ spectrum for DSFGs, and find evidence of 20030 km s
gas outflows. Nebular line emission for a sub-sample of our detections indicate
that hard ionizing radiation fields are ubiquitous in high-z DSFGs, even more
so than typical mass or UV-selected high-z galaxies. We also confirm the
extreme level of dust obscuration in DSFGs, measuring very high Balmer
decrements, and very high ratios of IR to UV and IR to H luminosities.
This work demonstrates the need to broaden the use of wide bandwidth technology
in the millimeter to the spectroscopic confirmations of large samples of high-z
DSFGs, as the difficulty in confirming such sources at optical/near-infrared
wavelengths is exceedingly challenging given their obscuration.Comment: 14 pages, 13 figures, ApJ accepted. Composite DSFG Halpha spectrum
available at www.as.utexas.edu/~cmcasey/downloads.htm
Invisible Higgs Boson Decay into Massive Neutrinos of 4th Generation
Results from several recent experiments provide inderect evidences in the
favor of existence of a 4th generation neutrino. Such a neutrino of mass about
50 GeV is compatible with current physical and astrophysical constraints and
well motivated in the framework of superstring phenomenology. If sufficiently
stable the existence of such a neutrino leads to the drastic change of Higgs
boson physics: for a wide range of Higgs boson masses the dominant mode of
Higgs boson decay is invisible and the branching ratios for the most promising
modes of Higgs boson search are significantly reduced. The proper strategy of
Higgs boson searches in such a framework is discussed. It is shown that in the
same framework the absence of a signal in the search for invisible Higgs boson
decay at LEP means either that the mass of Higgs is greater than 113.5 GeV or
that the mass difference between the Higgs mass and doubled neutrino mass is
small.Comment: 8 pages, 2 figure
Uncertainties of the Inclusive Higgs Production Cross Section at the Tevatron and the LHC
We study uncertainties of the predicted inclusive Higgs production cross
section due to the uncertainties of parton distribution functions (PDF).
Particular attention is given to bbH Yukawa coupling enhanced production
mechanisms in beyond SM scenarios, such as MSSM. The PDF uncertainties are
determined by the robust Lagrange Multiplier method within the CTEQ global
analysis framework. We show that PDF uncertainties dominate over theoretical
uncertainties of the perturbative calculation (usually estimated by the scale
dependence of the calculated cross sections), except for low Higgs masses at
LHC. Thus for the proper interpretation of any Higgs signal, and for better
understanding of the underlying electroweak symmetry breaking mechanism, it is
important to gain better control of the uncertainties of the PDFs.Comment: LaTeX, JHEP, 19 pages, 14 figure
Retrograde semaphorin-plexin signalling drives homeostatic synaptic plasticity.
Homeostatic signalling systems ensure stable but flexible neural activity and animal behaviour. Presynaptic homeostatic plasticity is a conserved form of neuronal homeostatic signalling that is observed in organisms ranging from Drosophila to human. Defining the underlying molecular mechanisms of neuronal homeostatic signalling will be essential in order to establish clear connections to the causes and progression of neurological disease. During neural development, semaphorin-plexin signalling instructs axon guidance and neuronal morphogenesis. However, semaphorins and plexins are also expressed in the adult brain. Here we show that semaphorin 2b (Sema2b) is a target-derived signal that acts upon presynaptic plexin B (PlexB) receptors to mediate the retrograde, homeostatic control of presynaptic neurotransmitter release at the neuromuscular junction in Drosophila. Further, we show that Sema2b-PlexB signalling regulates presynaptic homeostatic plasticity through the cytoplasmic protein Mical and the oxoreductase-dependent control of presynaptic actin. We propose that semaphorin-plexin signalling is an essential platform for the stabilization of synaptic transmission throughout the developing and mature nervous system. These findings may be relevant to the aetiology and treatment of diverse neurological and psychiatric diseases that are characterized by altered or inappropriate neural function and behaviour
A Turnover in the Galaxy Main Sequence of Star Formation at for Redshifts
The relationship between galaxy star formation rates (SFR) and stellar masses
() is re-examined using a mass-selected sample of 62,000
star-forming galaxies at in the COSMOS 2-deg field. Using new
far-infrared photometry from -PACS and SPIRE and -MIPS 24
m, along with derived infrared luminosities from the NRK method based on
galaxies' locations in the restframe color-color diagram vs. , we are able to more accurately determine total SFRs for our complete
sample. At all redshifts, the relationship between median and
follows a power-law at low stellar masses, and flattens to nearly constant SFR
at high stellar masses. We describe a new parameterization that provides the
best fit to the main sequence and characterizes the low mass power-law slope,
turnover mass, and overall scaling. The turnover in the main sequence occurs at
a characteristic mass of about at all redshifts.
The low mass power-law slope ranges from 0.9-1.3 and the overall scaling rises
in SFR as a function of . A broken power-law fit below
and above the turnover mass gives relationships of below the turnover mass and above
the turnover mass. Galaxies more massive than have on average, a much lower specific star formation rate (sSFR) than
would be expected by simply extrapolating the traditional linear fit to the
main sequence found for less massive galaxies.Comment: 16 pages, 7 figures. Accepted for publication in Ap
Ultra-broadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab
We present an ultra broadband thin-film infrared absorber made of saw-toothed
anisotropic metamaterial. Absorbtivity of higher than 95% at normal incidence
is supported in a wide range of frequencies, where the full absorption width at
half maximum is about 86%. Such property is retained well at a very wide range
of incident angles too. Light of shorter wavelengths are harvested at upper
parts of the sawteeth of smaller widths, while light of longer wavelengths are
trapped at lower parts of larger tooth widths. This phenomenon is explained by
the slowlight modes in anisotropic metamaterial waveguide. Our study can be
applied in the field of designing photovoltaic devices and thermal emitters.Comment: 12 pages, 4 picture
Spectral function of the electron in a superconducting RVB state
We present a model calculation of the spectral function of an electron in a
superconducting resonating valence bond (RVB) state. The RVB state, described
by the phase-string mean field theory is characterized by three important
features: (i) spin-charge separation, (ii) short range antiferromagnetic
correlations, and (iii) holon condensation. The results of our calculation are
in good agreement with data obtained from Angle Resolved Photoemission
Spectroscopy (ARPES) in superconducting Bi 2212 at optimal doping
concentration.Comment: 4 pages, 3 figure
Dimensionality of Carbon Nanomaterials Determines the Binding and Dynamics of Amyloidogenic Peptides: Multiscale Theoretical Simulations
Experimental studies have demonstrated that nanoparticles can affect the rate of protein self-assembly, possibly interfering with the development of protein misfolding diseases such as Alzheimer's, Parkinson's and prion disease caused by aggregation and fibril formation of amyloid-prone proteins. We employ classical molecular dynamics simulations and large-scale density functional theory calculations to investigate the effects of nanomaterials on the structure, dynamics and binding of an amyloidogenic peptide apoC-II(60-70). We show that the binding affinity of this peptide to carbonaceous nanomaterials such as C60, nanotubes and graphene decreases with increasing nanoparticle curvature. Strong binding is facilitated by the large contact area available for π-stacking between the aromatic residues of the peptide and the extended surfaces of graphene and the nanotube. The highly curved fullerene surface exhibits reduced efficiency for π-stacking but promotes increased peptide dynamics. We postulate that the increase in conformational dynamics of the amyloid peptide can be unfavorable for the formation of fibril competent structures. In contrast, extended fibril forming peptide conformations are promoted by the nanotube and graphene surfaces which can provide a template for fibril-growth
Quantisations of piecewise affine maps on the torus and their quantum limits
For general quantum systems the semiclassical behaviour of eigenfunctions in
relation to the ergodic properties of the underlying classical system is quite
difficult to understand. The Wignerfunctions of eigenstates converge weakly to
invariant measures of the classical system, the so called quantum limits, and
one would like to understand which invariant measures can occur that way,
thereby classifying the semiclassical behaviour of eigenfunctions. We introduce
a class of maps on the torus for whose quantisations we can understand the set
of quantum limits in great detail. In particular we can construct examples of
ergodic maps which have singular ergodic measures as quantum limits, and
examples of non-ergodic maps where arbitrary convex combinations of absolutely
continuous ergodic measures can occur as quantum limits. The maps we quantise
are obtained by cutting and stacking
- …